
Computer Methods and Programs in Biomedicine 221 (2022) 106884 

Contents lists available at ScienceDirect 

Computer Methods and Programs in Biomedicine 

journal homepage: www.elsevier.com/locate/cmpb 

Early detection and classification of abnormality in prior 

mammograms using image-to-image translation and YOLO techniques 

Asma Baccouche 

a , ∗, Begonya Garcia-Zapirain 

b , Yufeng Zheng 

c , Adel S. Elmaghraby 

a 

a Department of Computer Science and Engineering, University of Louisville, Louisville, KY, 40292, USA 
b eVida Research Group, University of Deusto, Bilbao, 4800, Spain 
c University of Mississippi Medical Center, Jackson, MS, 39216, USA 

a r t i c l e i n f o 

Article history: 

Received 14 January 2022 

Revised 27 April 2022 

Accepted 10 May 2022 

Keywords: 

Breast cancer 

Detection 

Classification 

YOLO 

Prior mammogram 

Early diagnosis 

a b s t r a c t 

Background and Objective: Computer-aided-detection (CAD) systems have been developed to assist radi- 

ologists on finding suspicious lesions in mammogram. Deep Learning technology have recently succeeded 

to increase the chance of recognizing abnormality at an early stage in order to avoid unnecessary biopsies 

and decrease the mortality rate. In this study, we investigated the effectiveness of an end-to-end fusion 

model based on You-Only-Look-Once (YOLO) architecture, to simultaneously detect and classify suspi- 

cious breast lesions on digital mammograms. Four categories of cases were included: Mass, Calcification, 

Architectural Distortions, and Normal from a private digital mammographic database including 413 cases. 

For all cases, Prior mammograms (typically scanned 1 year before) were all reported as Normal, while 

Current mammograms were diagnosed as cancerous (confirmed by biopsies) or healthy. 

Methods: We propose to apply the YOLO-based fusion model to the Current mammograms for breast le- 

sions detection and classification. Then apply the same model retrospectively to synthetic mammograms 

for an early cancer prediction, where the synthetic mammograms were generated from the Prior mam- 

mograms by using the image-to-image translation models, CycleGAN and Pix2Pix. 

Results: Evaluation results showed that our methodology could significantly detect and classify breast 

lesions on Current mammograms with a highest rate of 93% ± 0.118 for Mass lesions, 88% ± 0.09 for 

Calcification lesions, and 95% ± 0.06 for Architectural Distortion lesions. In addition, we reported eval- 

uation results on Prior mammograms with a highest rate of 36% ± 0.01 for Mass lesions, 14% ± 0.01 

for Calcification lesions, and 50% ± 0.02 for Architectural Distortion lesions. Normal mammograms were 

accordingly classified with an accuracy rate of 92% ± 0.09 and 90% ± 0.06 respectively on Current and 

Prior exams. 

Conclusions: Our proposed framework was first developed to help detecting and identifying suspicious 

breast lesions in X-ray mammograms on their Current screening. The work was also suggested to re- 

duce the temporal changes between pairs of Prior and follow-up screenings for early predicting the lo- 

cation and type of abnormalities in Prior mammogram screening. The paper presented a CAD method 

to assist doctors and experts to identify the risk of breast cancer presence. Overall, the proposed CAD 

method incorporates the advances of image processing, deep learning and image-to-image translation for 

a biomedical application. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Breast cancer is a malignant tumor that arises from the ab- 

ormal breast cells and it is one of the dangerous diseases that 

hreaten women worldwide [1] . According to the American Cancer 

ociety, over 279,0 0 0 cases were reported in the United States in 
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020 and it is estimated that 43,600 women will die from breast 

ancer in 2021 [2] . The most common symptom for breast can- 

er is severe change in the breast structure and in the tissue ap- 

earance, which have been also noticed with a rapid formation of 

reast tumors and cell clusters [3] . 

Mammography screening is one of the effective medical imag- 

ng tools for early breast cancer detection and diagnosis, and it can 

ower rates of advanced and fatal breast cancer in its early stages 

4] . To inspect for potential lesions, i.e. Mass, Calcification, Archi- 
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ectural distortion, radiologists rely on human visual understand- 

ng to detect and extract all diagnostic information from mammo- 

rams [5] . However, it has been proved that about 10% to 30% of 

ancer cases are missed on screening mammography, which gen- 

rates a false negative rate up to 50% depending on the type of 

esions and the breast density [6] . With the increase of subsequent 

ollow-ups and screenings during the diagnosis period, it has been 

emonstrated that about 50% of Prior mammograms have lesions 

isible in retrospect [7] . Consequently, it made radiologists won- 

er whether normal Prior mammograms without clear signs of any 

ype of lesions could actually contain hidden information indicat- 

ng a future risk of tumor appearance [8] . 

For these reasons, computer-aided detection (CAD) technology 

as been introduced over the past 30 years to improve the preci- 

ion of mammography interpretation [9] . Typically, CADs are de- 

eloped to localize suspicious regions of lesions that exist in the 

creened mammograms. The CAD approach is usually based on 

xtracting image characteristics such as, gray levels, texture, and 

hape to identify regions of interest (ROI) via simple machine 

earning techniques [10] . So far, these techniques have not lowered 

he high false positive rate, nor overcome the high variation of tu- 

ors shape, size and texture. 

In recent studies, deep learning has shown interest in adopt- 

ng advanced models that could extract sophisticated features to 

ocalize and identify breast tumors with an equal or higher per- 

ormance of human interpretation [ 11 , 12 ]. With the continuous 

ncrease of mammography data availability and the existing large 

omputational computers, deep learning algorithms have been im- 

lemented to alleviate the radiologists’ effort in reading and as- 

essing mammography images [13] . Deep learning models have 

hown the ability to extract deep and high-level features from raw 

mages without knowledge assistance, and they demonstrated re- 

arkable success for objects detection and classification in mam- 

ography [ 14 , 15 ]. Such models that were widely used in the lit-

rature are considered variation of the Convolutional Neural Net- 

orks (CNNs) model, i.e. R-CNNs, Fast CNNs and Faster R-CNNs 

odels [16] . However, one single model called You-Only-Look- 

nce (YOLO) was suggested to conduct the detection and classi- 

cation tasks simultaneously with low memory dependence and 

ast results, which made it convenient for CAD application [ 17 , 18 ].

Although many developments have been carried out to improve 

he detection accuracy of breast lesions using the deep learning 

echniques, there are few efforts addressed to use Prior and follow- 

p mammograms to simulate the disease progression and avoid 

nnecessary screening or overdiagnosis that cost billions of dollars 

nnually in healthcare spending [19] . 

In this study, we first propose using the YOLO-based model to 

imultaneously detect abnormal lesions on Current mammograms 

nd classify them into Mass, Calcification, or Architectural Distor- 

ion. Second, we investigate potential performance of the trained 

odel to localize and label abnormal regions in Prior mammo- 

rams that were reported as normal, but later diagnosed with ab- 

ormal findings at follow-up screening. To do that, our methodol- 

gy uses image-to-image translation techniques to learn at a first 

tage an image mapping between pairs of mammograms that gen- 

rates translated Prior mammograms to overcome misalignment 

etween screenings, and at a second stage, it predicts location and 

ature of future lesions’ appearance at early screening. 

. Background 

Since its discovery in 1913, mammography has been consid- 

red an essential key for early detection and diagnosis of specious 

esions. Mammography screening has helped radiologists identify 

reast cancer and several studies showed its impact for a signif- 

cant reduction in mortality rate [20] . With the remarkable ad- 
2 
ances in computer vision and artificial intelligence to assist doc- 

ors for medical imaging analysis, many studies showed the effec- 

iveness of CAD systems to automatically detect suspicious lesions 

rom raw screened mammograms [21] . The introduction of neural 

etwork models changed the CAD’s approach and substituted the 

se of hand-crafted features extraction with deep learning archi- 

ectures that are capable of learning complex features at different 

cales [22] . 

Recent studies have attempted to develop CAD models to local- 

ze the existing lesions in a fast and precise way using the differ- 

nt neural networks. Ribli et al. [23] developed a CAD system using 

he Faster R-CNN model to detect and classify breast lesions of IN- 

reast dataset into malignant or benign and obtained an AUC score 

f 0.95. Similarly, Peng et al. [24] suggested an automated mass 

etection approach that combined Faster R-CNN architecture and 

 multiscale-feature pyramid network. The work achieved a true 

ositive rate of 0.93 and 0.95 respectively on CBIS-DDSM and IN- 

reast datasets. The study yielded a detection accuracy of up to 

0% and a classification accuracy of 93.5% on the DDSM dataset. In 

nother work by Li et al. [25] , a bilateral mass detection method 

as introduced using two networks: a registration network be- 

ween left and right breasts and a Siamese-Faster-RCNN network 

o detect masses from pairs of registered mammograms. They re- 

orted results of a true positive rate of 0.88 on the INbreast dataset 

nd 0.85 on a private dataset. Another attempt by Vivek et al. 

26] used a Single Shot Detector (SSD) model presented in [27] to 

ocalize breast tumors in a first step and then segment and classify 

egions of interest. The work achieved a true positive rate of 0.97 

n the INbreast dataset. 

With the progress of deep learning architectures for object de- 

ection in mammography, the You-Only-Look-Once (YOLO) model 

as been introduced and shown success in achieving a fast and 

ccurate detection and classification compared to state-of-the-art 

ethods. This was manifested by Al-masni et al. [28] who devel- 

ped a CAD system using the YOLO-based model and achieved a 

etection accuracy of 85.52% on the DDSM dataset. In addition, 

amed et al. [29] presented a YOLOV4-based CAD system with 2- 

ath detection of masses in full and cropped mammograms and 

hen classified them into benign and malignant. The system suc- 

eeded with an overall detection rate of 98% and classification ac- 

uracy of 95%. In the same context, Al-masni et al. [30] proposed a 

AD system framework that detected breast masses in full images 

sing the YOLO-based model with an overall accuracy of 99.7%. Ac- 

ordingly, Baccouche et al. [31] recently proposed a YOLO-based fu- 

ion model to detect breast lesions and classify them into mass or 

alcification. The work achieved a detection accuracy rate of 98.1% 

n the INbreast dataset and 95.7% on the CBIS-DDSM dataset. 

Early detection and diagnosis of breast cancer in mammography 

sing the deep learning-based CAD systems can help prevent de- 

elopment of tumors by marking lesions, and thus it can effectively 

ecrease death rate [32] . A retrospective study by Watanabe et al. 

33] showed a potential area of improvement for radiologists’ inter- 

retation of screening mammograms for early detection using Ar- 

ificial Intelligence. The studied CAD system succeeded to mark 30 

86%) of 35 missed micro-calcifications and 58 (73%) of 80 missed 

asses. In addition, missed malignant lesions were flagged as early 

s 70 months Prior to recall or diagnostic follow-up. In conse- 

uence, CAD systems could benefit from the change that occurred 

etween Prior and Current mammographic exams. A recent work 

y Timp et al. [34] tried to improve the characterization of mass 

esions by adding information about the tumor behavior over time. 

he authors presented a CAD program to detect temporal changes 

etween two consecutive screening images using a regional reg- 

stration method in order to localize lesions detected on the cur- 

ent views and their corresponding on the Prior views. After that, a 

upport Vector Machines (SVM) classifier was applied to show the 
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ffectiveness of temporal features. In a different study, Timp et al. 

35] attempted to improve detection methods by including tem- 

oral information in the CAD system. A regional registration tech- 

ique along feature space was used to map suspicious locations 

n the Current mammograms with a corresponding location on 

he Prior mammograms with 72% accuracy. Accordingly, Loizidou 

t al. [36] tried to increase the micro-calcification detection accu- 

acy to 99.2% by adding temporal subtraction between mammo- 

ram pairs before applying SVMs classifier. In the same context, a 

ecent study by Loizidou et al. [37] extended their previous work 

f breast micro-classification detection and classification by adding 

n image registration step of Prior mammograms before applying 

emporal subtraction of pairs. In a different work by Zheng et al. 

38] , follow-up digital mammography images were integrated to- 

ether to develop a CAD method for breast cancer detection. All 

egional images were detected using the Haar features, local bi- 

ary pattern and histogram of oriented gradient via the AdaBoost 

pproach and then fed into a CNN to filter out the false positives 

ases. 

With the advent of deep convolutional neural networks, image- 

o-image translation has been employed to solve many computer 

ision applications in medical imaging. Most of the recent appli- 

ations, such as image synthesis and reconstruction, which build 

n image-to-image translation, are based on two fundamental ar- 

hitectures, called Pix2Pix and CycleGAN, depending on the im- 

ge’s data fashion, paired or unpaired datasets [39] . A recent ap- 

lication by Shen et al. [40] employed the Pix2Pix network for 

mage-to-mask segmentation in mammography. Pix2pix was also 

mployed by Liao et al. [41] to artificially remove artifacts in CT 

cans and the method showed improvement for clinical image re- 

onstruction. Moreover, a CycleGAN was successfully employed by 

odanwal et al. [42] to reconstruct and harmonize MRI images for 

reast cancer without requiring pairs of aligned images. The effec- 

iveness of CycleGAN was adopted in a recent work by Baccouche 

t al. [43] that attempted to augment the mammography data by 

enerating synthetic images between two unpaired mammography 

atasets using the CycleGAN model. A recent work by Hammami 

t al. [44] also enhanced the multi-organ detection performance 

y combining CycleGAN and YOLO. 

Inspired by the reviewed works and their diagnosis results, 

e first attempt solving the task of detection and classification 

f three types of breast lesions (i.e., Mass, Calcification, Archi- 

ectural distortion) on most recent screening mammograms us- 

ng the YOLO-based fusion models. Second, we suggest replicating 

arly-screened mammograms with healthy diagnosis and main- 

aining Prior shape and appearance while predicting suspicious 

ndings that resemble the Current mammograms. We evaluated 

wo state-of-the-art techniques for image-to-image translation, Cy- 

leGAN and Pix2Pix and compared their performance on predicting 

ocation and type of lesions on Prior mammograms at early screen- 

ng. 

. Methods and materials 

.1. YOLO-based fusion model: overview 

The main method is based on our recent work [31] , where the 

OLO architecture model for simultaneous detection and classifi- 

ation of breast lesions was proposed. We upgrade the work to 

valuate the capability of our previous methodology on localizing 

uspicious regions from the entire breast mammograms and clas- 

ifying the type of lesions into Mass, Calcification, or Architectural 

istortion. 

YOLO is a deep learning network that where a single Convolu- 

ional Neural Networks (CNNs) architecture model simultaneously 

ocalizes the bounding boxes of objects and classifies their class la- 
3 
els from the entire images. The YOLO-based model has had four 

ersions, but at the time our recent work was published, the latest 

ersion was YOLO-V3, which was adopted to detect different scaled 

bjects using the DarkNet backbone framework. 

As the previous work detailed, we employed a YOLO-based 

odel in a different evaluation fashion. The basic model was ini- 

ially trained using different configurations (i.e. target class labels). 

hen, each experiment was evaluated by selecting the best pre- 

icted bounding boxes within all augmented images (i.e. original 

nd rotated images) having the highest confidence score. The tech- 

ique was proved an effective way to determine the best repre- 

entative images to precisely detect and classify breast lesions in 

ach mammogram. After that, as shown in Fig. 1 , the idea of YOLO- 

ased fusion models was implemented in order to improve the fi- 

al prediction results. Different predictions were joined to lower 

he final error rate and to combine models that were differently 

onfigured. In this work, we used the same notation by referring 

odel1 to the YOLO-based model that was trained and config- 

red for one class either Mass, Calcification, or Architectural Dis- 

ortion. Therefore, Model2 refers to the YOLO-based model that 

as configured for multiple classes training (i.e. all three classes 

ogether). Finally, the Fusion Model refers to the combined evalu- 

tion of Model1 and Model2 that was used to improve the overall 

etection performance. The final model should select predictions 

hat were not within the single class predictions according to a 

hreshold of 0.5, which showed satisfying results. 

All models were developed and tested on the Current mammo- 

rams from the most recent screening, with either Mass, Calcifi- 

ation or Architectural Distortion lesions. Different from our previ- 

us work, we added a class label, ‘Normal’ for the current mam- 

ograms that were not diagnosed with abnormal findings during 

he follow-up screening. Our trained YOLO-based model on abnor- 

al mammograms was applied on Normal mammograms to en- 

ure that no bounding boxes were predicted, and consequently, 

lassify the mammograms as Normal. 

.2. Image-to-image translation technique 

Deep convolutional networks have been enormously improved 

o provide cutting-edge solutions to computer vision and they have 

iven the ability to manipulate images for complex image-related 

asks such as image synthesis, image reconstruction, image transla- 

ion, etc. Recently, these tasks were significantly treated thanks to 

he discovery of Generative Adversarial Networks (GANs). A stan- 

ard GAN comprises two models, a generator and a discrimina- 

or. These models compete against each other to produce fake data 

hat is realistic enough to fool the discriminator. The architecture 

as known success in medical imaging applications [45] and many 

ariants were introduced such as conditional GAN (cGAN), Wasser- 

tein Generative Adversarial Network (WGAN), etc. Further work 

xtended the idea to create multiple GANs that can serve for syn- 

hetic data augmentation, domain adaptation, and style transfer. 

his allowed using a pair of generators to learn mappings of im- 

ges and a pair of discriminators to learn two different types of 

mages. The idea emphasized the image-to-image translation that 

everages external labeled dataset to reconstruct effectively the 

ource domain images with additional characteristics of a target 

omain such as pixels, color distribution, shape, and texture. In 

his context, Pix2Pix and CycleGAN are two common models that 

ere developed to apply image-to-image translation techniques. As 

hown in Fig. 2 , similar to the standard GAN, the two models have

he target of translating images between two domains, however 

he difference is that Pix2Pix model works with paired datasets 

ut only accepts one image from source domain (A) but it cor- 

ects and updates the training using its corresponding image from 

 target domain (B). Differently, CycleGAN model works with un- 
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Fig. 1. YOLO-based Fusion model - Example of mammogram with Mass lesion. 

Fig. 2. Comparative scheme of standard GAN vs two variants for image-to-image translation: Pix2Pix and CycleGAN. 
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aired datasets, accepts two images, and performs a cyclic transla- 

ion across domains to return new synthetic images. 

In fact, Pix2Pix [46] is based on conditional GAN (cGAN) archi- 

ecture to learn a mapping between images where the network 

s composed from a generator G A → B and a discriminator D. The 

enerator has an encoder-decoder structure and it tries to transfer 

pecial characteristics of an input image x A r to get an output im- 

ge x B g . The discriminator uses PatchGAN architecture and it com- 

ares the input image to the generated image on one time and the 

nput image to the corresponding image from the external dataset 

 

B 
r another time to update the generator learning. 

Moreover, the Cycle Generative Adversarial Network, called Cy- 

leGAN [47] , was designed to learn mapping between images with- 

ut the need to have correlations and one-to-one matches. The 

dea was built on the top of Pix2Pix architecture but with the use 

f two generators G A → B and G B → A for cycled images mapping 

nd two discriminators D A and D B to distinguish between real and 
4 
ynthetic images. Additionally, the CycleGAN technique employs a 

ycle consistency for the generators to ensure a good reconstruc- 

ion of the new image back to their original look. Consequently, 

he technique helps to capture both domains’ features and style 

ithout mismatch. 

.3. Early detection and classification framework 

In this work, we first apply and evaluate the YOLO technique 

n the Current mammograms to detect different breast lesions and 

lassify them into Mass, Calcification, or Architectural Distortion, 

nd the rest to Normal. Second, we consider two image-to-image 

echniques, Pix2Pix and CycleGAN, to learn mapping between Cur- 

ent mammograms and their corresponding Prior mammograms. 

s shown in Fig. 3 , new synthetic Prior mammograms are gener- 

ted to overcome the misalignment between the screenings due to 

emporal and texture changes. Next, the trained models on the first 
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Fig. 3. Framework for early detection and classification on Prior mammograms – Example of Prior mammogram with normal diagnosis and Current mammogram with Mass 

lesions (red bounding boxes). 
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Table 1a 

Overall Data Distribution – Current and Prior Exams. 

Total number of patients with pairs and pathology 230 

Total number of Mammograms 833 

Total number of Mammograms with pathology 826 

Total number of Prior Mammograms (Normal) 413 

Total number of Current Mammograms 413 

Table 1b 

Detailed Data Distribution – Current Exams. 

Number of Current Mammograms with Mass Lesions 181 

Number of Current Mammograms with Calcification Lesions 116 

Number of Current Mammograms with Architectural Distortion Lesions 74 

Number of Current Mammograms without Lesions (Normal) 42 

m
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tep are used to predict the location and type of breast lesions on 

he translated Prior mammograms. Predicting the bounding boxes 

or suspicious lesions of “future cancers” in Prior mammograms is 

hallenging. Therefore, we integrate all diagnostic information into 

ne framework that explores possible evidence of invisible pat- 

erns for indicating the risk of “future cancer”. Inference models 

re directly applied on translated Prior mammograms and evalua- 

ion was carried out using true bounding boxes’ positions and class 

abels of their corresponding Current mammograms. 

. Results 

All experiments using the proposed methods were conducted 

n a PC with the following specifications: Intel(R) Core (TM) i7- 

700K processor with 32 GB RAM, 3.70 GHz frequency, and one 

VIDIA GeForce GTX 1090 Ti GPU. Python 3.6 was used for con- 

ucting all experiments. 

.1. Dataset 

In this study, we used a collection of private dataset from the 

niversity of Connecticut Center (UCHC), named UCHC DigiMammo 

UCHCDM) database [48] . The dataset contains screening mammo- 

rams of 230 patients, where each case had an initial screening, 

alled Prior exam, and a second follow-up screening between 1 

o 6 years, called the Current exam, and a sample is displayed in 

ig. 4 . 

Each screening in the dataset acquires two different views, CC 

nd MLO. All images were saved with the Digital Imaging and 

ommunications in Medicine (DICOM) format, and were annotated 

y expert radiologists in a description text file with correspond- 

ng pathology of a mammographic finding (i.e. Mass, Calcifica- 

ion, Architectural Distortion, Normal), as detailed in Table 1a and 

able 1b . Pixel-level ground-truth images were also provided sep- 

rately where suspicious locations were circulated. A total of 413 
5 
ammograms are considered separately for Current and Prior ex- 

ms, and they have an average size of 2950 × 3650 pixels. 

.2. Data preparation 

All mammograms were collected using a digital X-ray mam- 

ography tool that compressed and stored the images in DICOM 

ormat. Therefore, we applied some preprocessing steps using the 

enoising and the histogram equalization methods to all origi- 

al images to improve the quality prior to training process. Due 

o large sizes of original DICOM images, all mammograms were 

own-sampled using a bi-cubic interpolation over a 4 × 4 neigh- 

orhood. In our experiments, we used image’ sizes of 448 × 448 

ixels (i.e. divisible by 32 according to DarkNet backbone architec- 

ure of YOLO-V3), which can fit in our GPU memory. Finally, all 

raining images were normalized to have the intensity values in 

he range of [0, 1]. Samples of original and preprocessed images 

re illustrated below in Fig. 5 . 
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Fig. 4. Sample of Prior and Current mammograms screenings (2.5 years) for Case# 31, Right CC View. (a) Prior exam with Normal mammogram (i.e. No diagnosis). (b) 

Current exam with Mass present. 
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Deep learning models require a large number of data to en- 

ure a fast learning convergence and generalized inference. How- 

ver, medical datasets suffer from a shortage of annotated im- 

ges because it is hard to collect and label medical images. To 

olve this problem, data augmentation techniques were mainly 

uggested to increase the dataset’s size by rotating or flipping in- 

tances. In this paper, we rotated original images four times with 

he angles �θ = {0 °, 90 °, 180 °, 270 °}. Consequently, a total num-

er of 1,652 mammograms were generated for UCHCDM dataset 

o train and test the model. Original samples from each class are 

hown below in Fig. 6 . 

.3. Evaluation metrics and experiments settings 

In this study, we used object detection and classification met- 

ics to measure the performance of YOLO-based models. To eval- 

ate the detection of breast lesions’ location in the mammograms 

nd their type, we first measured the intersection over union (IoU) 

core between each detected box and its corresponding ground- 

ruth (i.e. (x, y, h, w) coordinates and class label), and then we ver-

fied if it exceeded a confidence score threshold of 0.35. Eq. (1) de- 

ails the IoU score formula. 

oU scor e = 

Ar ea of Intersection 

Area of Union 

(1) 

After that, we reported a final objective measure, called detec- 

ion accuracy rate, which considered the predicted class probabil- 

ty of true detected boxes. Inspired by the work of Samuelson et al. 

49] and recently adapted in the work [31] , we computed the num- 

er of true detected images within lesions’ type (i.e. Mass, Calcifi- 

ation, Architectural distortion) and Normal images over the total 

umber of mammograms used, as defined in Eq. (2) . 

etection accuracy = 

T rue detected cases 

T otal number of cases 
(2) 
s

6

Hence, the suggested measure allows removing all cases that 

ave a lower IoU score (i.e. low detection precision) before report- 

ng the final detection accuracy rate. Therefore, the predicted boxes 

hat had confidence probability scores equal or greater than the 

onfidence score threshold were only considered. We measured 

he detection accuracy rate overall and separately for each class 

abel to evaluate the performance of the YOLO-based model. 

Additionally, we particularly reported the Current mammo- 

rams prediction results using the area under curve (AUC) that re- 

ects the performance of the model and the trade-off between the 

rue positive rate and false positive rate for each target class la- 

el. We used three additional metrics called precision, recall, and 

ensitivity that are computed using the TP, FP, and FN that are de- 

ned per predicted class to represent the number of true positive, 

alse positive, and false negative predictions, respectively as shown 

n Eq. (3) , Eq. (4) , and Eq. (5) . 

 recision = 

T P 

T P + F P 
(3) 

ecall = 

T P 

T P + F N 

(4) 

ensit i v it y = 1 − F NR = 1 − F N 

F N + T P 
(5) 

Experiments for the image-to-image techniques that were con- 

ucted using the CycleGAN and Pix2Pix models were trained ac- 

ordingly on unpaired and paired datasets images. The Cycle- 

AN model was based on the available tutorial in Keras web- 

age ( https://keras.io/examples/generative/cyclegan ). The architec- 

ure model has two generators and two discriminators networks. 

he generator network consists of two down-sampling blocks with 

lter sizes [128, 256], nine residual blocks with filter size 256, and 

wo up-sampling blocks with filter sizes [128, 64]. The discrimi- 

ator network is based on four down-sampling blocks with filter 

izes [64, 128, 256, 512]. For Pix2Pix model, we similarly used two 

https://keras.io/examples/generative/cyclegan
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Fig. 5. Samples from Current exams of original (upper row) and preprocessed mammograms (bottom row). (a) Case# 9: Left CC View. (b) Case# 14: Left CC View. (c) Case# 

31: Right CC View. 

Fig. 6. Samples of original mammograms with red bounding boxes of ground-truth. (a) Case# 14: Current exam with Mass present, Left CC View. (b) Case# 220: Current 

exam with Calcification present, Right CC View. (c) Case# 27: Current exam with Architectural Distortion present, Left CC View. 

7 
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Table 2 

Cross Validation Folds: Data distribution across class labels. 

Data Breast Lesions Normal Overall 

Mass Calcification Architectural Distortion 

Training 578 373 243 130 1,324 

Testing 144 92 60 32 328 

Total 722 465 303 162 1,652 

Fig. 7. Learning curve plot between Training and Testing sets. 
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enerators and two discriminators networks. The generator net- 

ork contains seven down-sampling and up-sampling blocks with 

lter sizes [64, 128, 256, 512, 512, 512, 512]. We used the same dis- 

riminator network from the CycleGAN architecture model. Hence, 

he two models were trained and evaluated on 100 epochs and op- 

imized using the Adam technique with learning rate of 0.0 0 02 and 

eta score of 0.5. 

To ensure the model robustness, we performed a 5-fold cross 

alidation by training and testing the model using different test 

ets of random mammograms. Consequently, the entire dataset 

as randomly divided into equal 5 folds of 1,324 training images 

80%) and 328 testing images (20%) with respect to the imbalanced 

lasses as detailed in Table 2 . Finally, we reported the average of 

esults over all the folds. 

For all experiments using the YOLO-based model, we set the 

earning rate to be 0.001, the batch size to be 8, and the num- 

er of epochs to be 100. The loss function combined the bounding 

ox regression loss, the class label loss, and the confidence loss. 

ll functions were based on cross-entropy and they were scaled to 

andle the imbalance of class labels on each batch. In addition, the 

arly stopping method was used for the second half of iterations 

o dynamically reduce the learning rate by 10% every 10 epochs 

n case of constant loss function value. In order to prevent over- 

tting, all models were initialized by weights from a pre-trained 

odel on a large public dataset, Microsoft COCO. Then, the models 

ere re-trained and new layers were fine-tuned on our mammog- 

aphy dataset. As a consequence, we only monitored the learning 

urve with the loss function that was iteratively dropped and op- 

imized during the epochs. As shown below in Fig. 7 , there was no

verfitting observed during the learning. 

.4. Evaluation of YOLO-based model on current mammograms 

First part of the study considered only Current mammograms 

rom the most recent screening exams. The YOLO-based models 
8

ere trained differently over the Current views of the UCHCDM 

ataset. We varied the models according to the input dataset and 

he target class. Hence, Model1 was configured for single classes 

nd Model2 was configured for mixed classes. Finally, the Fusion 

odel was designated to combine Model1 and Model2 for each 

arget class according to the approach described in [31] . Table 3 

hows quantitative comparison of the detection accuracy rate and 

ount that were reported using the 5-fold cross validation as μ ±
, where μ and σ refer to the mean and standard deviation, re- 

pectively. 

Results show the advantage of the adapted Fusion Model and 

onfirm its highest results overall and for each class label. Fusion 

odel had the highest score of 95% for Architectural Distortion le- 

ions and a score of 92% overall. Moreover, results in Table 3 show 

he ability of YOLO architecture to detect and classify the breast 

esions with a maximum accuracy rate of 93% for mammograms 

ith Mass lesions, 88% for mammograms with Calcification lesions, 

nd 95% for mammograms with Architectural Distortion lesions. 

ppropriately, Normal mammograms were also correctly classified 

ith a maximum accuracy score of 94% where no bounding boxes 

ere detected. All experiments had similar inference time with a 

aximum value of 0.62 seconds per image. 

Additionally, to get a better understanding of the models’ per- 

ormance, we generated the free-response receiver operating char- 

cteristic (FROC) curves to illustrate the number of false positives 

er image (FPI) for each target class label. Plots of the FROCs be- 

ween Average sensitivity and the average number of false pos- 

tives are shown in Fig. 8 that specifically compares between 

odel1, Model2, and the Fusion Model. 

By varying the threshold and the range of false positive be- 

ween 0.05 and 0.20 overall, we could achieve an average sensitiv- 

ty between 0.7 and 0.95 for all cases. Fig. 8 clearly shows that the 

usion model had the highest performance compared to the other 

valuated models. It is observed that the proposed model could 

btain an average sensitivity of more than 0.90 with an average FPI 
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Table 3 

Comparison performance for different models across labeled classes on Test sets. 

Models Results Breast Lesions Normal Overall Inference time per image (sec) 

Mass Calcification Architectural Distortion 

Count 113 74 49 25 261 

Model1 μ ± σ 79% ± 0.09 80% ± 0.05 82% ± 0.03 78% ± 0.01 79% ± 0.04 0.60 

Count 110 79 51 28 268 

Model2 μ ± σ 76% ± 0.03 86% ± 0.04 85% ± 0.02 87% ± 0.05 82% ± 0.03 0.62 

Count 135 81 57 30 303 

Fusion Model μ ± σ 93% ± 0.118 88% ± 0.09 95% ± 0.06 94% ± 0.11 92% ± 0.09 0.62 

Fig. 8. FROC curve plots of the YOLO based proposed Detection and Classification models per class label on Test sets. 
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f 0.20 for Mass lesions, an average sensitivity of more than 0.85 

ith an average FPI of 0.12 for Calcification lesions, and an average 

ensitivity of more than 0.90 with an average FPI of 0.175 for Ar- 

hitectural Distortion lesions. Accordingly, Normal cases in Current 

iews were evaluated using the FROC analysis and a false positive 

as considered when no detection should be occurred in a non- 

ancerous case but it was missed by the model. It is to notice that 

e could obtain an average sensitivity of around 0.95 with an av- 

rage FPI of 0.20. 

Finally, we analyzed the performance results with a particular 

ocus on the classification task that was conducted by the YOLO- 

ased Fusion model. Table 4 explores the calculated classification 

etrics by each class label, where we achieved the highest sensi- 

ivity of 94.11% on the cancer cases with Architectural Distortion 

nd a sensitivity of 92.09% on the non-cancerous cases. 

Additionally, Fig. 9 illustrates a visual comparison of the trade- 

ff between the false positive rate (FPR) and the true positive rate 
9 
TPR) according to the ROC curve plot between the different cases. 

e observed a highest AUC score of 0.95 for the Mass and the 

rchitectural Distortion cases, and an AUC score of 0.96 for the 

ormal cases. The low results for the Calcification lesions could 

e explained with the fact that this type of breast lesions do not 

ave standard shape and location and they are often small and 

andomly distributed which can limit the automatic detection [31] . 

Moreover, Fig. 10 illustrates the confusion matrix for the classi- 

cation of the true detected bounding boxes applied on the Cur- 

ent mammograms, where three types of lesions are presented 

ith the Normal cases (i.e. correct prediction without detected le- 

ions). Clearly, the prediction error for different classes is low with 

 high rate of 6.2% corresponding to the Normal class label and 

.6% corresponding to the Calcification cases. The distribution of 

rror within classes could be explained by the inability of YOLO- 

ased model to detect and distinguish some different types of le- 

ions having similar shapes such as Calcification and Architectural 
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Table 4 

Performance results for Detection and Classification on Test sets. 

Class Label Accuracy Precision Recall Sensitivity AUC 

Mass 0.94 0.94 0.94 0.93 0.95 

Calcification 0.93 0.88 0.88 0.88 0.94 

Architectural Distortion 0.98 0.95 0.95 0.94 0.95 

Normal 0.98 0.94 0.94 0.92 0.96 

Fig. 9. ROC curve plots of the proposed YOLO-based Fusion Model per class label 

on Test sets. 
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istortion that often have irregular shape in challenging positions 

ithin the breast. 

.5. Evaluation of YOLO-based model on prior mammograms 

Second part of the study focused on using the pairs of mam- 

ograms, including current views and their Prior screening exams 

n order to provide an early detection and classification of lesions 

n the Prior screening exams. All Prior mammograms were not 

nnotated with diagnosis and thus were considered Normal (i.e. 

on-cancerous, corresponding to 0s in “Experts prediction” row in 

ables 5a , 5b , and 5c ). In this part, we introduce a retrospective
Fig. 10. Confusion matrix of prediction 

10 
pproach to look back at the Prior mammograms and try to ex- 

lore any patterns of breast lesions before waiting on a follow-up 

creening. 

Our methodology is based on joining the learned mapping 

etween the temporal views and a trained model on Current 

ammograms that were annotated by experts. First, the pairs of 

atasets were prepared using the same configuration, and two 

mage-to-image translation models were trained between the two 

atasets to determine the images mapping. Consequently, synthetic 

ammograms from Prior screening exams were generated to re- 

emble the Current mammograms and preserve the general texture 

f the Prior mammograms. 

After that, the YOLO-based model that was trained and val- 

dated previously on the Current mammograms, was saved and 

sed for inference on Prior mammograms. Experiments were eval- 

ated using only the Fusion Model that showed the highest per- 

ormance in Section 4.4 . We first evaluated the performance us- 

ng the original Prior mammograms without image-to-image trans- 

ation and later compared to the Prior mammograms that were 

ranslated using the CycleGAN and Pix2Pix techniques. 

Table 5a , 5b and 5c present results of early prediction on Prior 

ammograms that are reported using the 5-fold cross validation 

s μ ± σ , where μ and σ refer to the mean and standard devia- 

ion, respectively. 

We considered a true prediction where the location and type of 

reast lesions were correctly captured using the inference model, 

etrospectively on non-cancerous screening views at t = 0 years. The 

nference evaluation was concluded using the ground-truth labels 

f the Current views that were generated by experts later at t = [1, 

] years. Consequently, all predictions should be fairly compared to 

 predictions (i.e. all were missed) by experts at t = 0. 

Results in Table 5a , 5b and 5c show the count and percent- 

ge of mammograms for each class and overall, that were correctly 
results for Current Mammograms. 



A. Baccouche, B. Garcia-Zapirain, Y. Zheng et al. Computer Methods and Programs in Biomedicine 221 (2022) 106884 

Table 5a 

Inference results of YOLO Fusion model on Test sets of original Prior Mammograms. 

Results for Prior Mammogram Prediction Breast Lesions Normal Overall Inference time per image (sec) 

Mass Calcification Architectural Distortion 

True prediction 33 16 19 26 94 

μ ± σ 22% ± 0.09 17% ± 0.07 31% ± 0.06 81% ± 0.02 28% ± 0.06 0.62 

Experts prediction 0 0 0 0 0 

False prediction 111 76 41 6 234 

μ ± σ 77% ± 0.08 82% ± 0.16 68% ± 0.03 18% ± 0.17 71% ± 0.03 

Table 5b 

Inference results of YOLO Fusion model on Test sets of Prior Mammograms using CycleGAN for image-to-image translation. 

Results for Prior Mammogram Prediction Breast Lesions Normal Overall Inference time per image (sec) 

Mass Calcification Architectural Distortion 

True prediction 32 10 22 26 91 

μ ± σ 22% ± 0.02 10% ± 0.08 36% ± 0.06 81% ± 0.02 27% ± 0.07 0.63 

Experts prediction 0 0 0 0 0 

False prediction 112 82 38 6 237 

μ ± σ 77% ± 0.07 89% ± 0.03 63% ± 0.13 18% ± 0.07 72% ± 0.02 

Table 5c 

Inference results of YOLO Fusion model on Test sets of Prior Mammograms using Pix2Pix for image-to-image translation. 

Results for Prior Mammogram Prediction Breast Lesions Normal Overall Inference time per image (sec) 

Mass Calcification Architectural Distortion 

True prediction 52 13 30 29 124 

μ ± σ 36% ± 0.01 14% ± 0.01 50% ± 0.02 90% ± 0.06 37% ± 0.1 0.63 

Experts prediction 0 0 0 0 0 

False prediction 92 79 30 3 204 

μ ± σ 63% ± 0.08 85% ± 0.08 50% ± 0.01 9% ± 0.03 62% ± 0.12 
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redicted at Prior views and considered for an early detection and 

lassification. All true predictions presented two scenarios; one for 

ll correct prediction on both Current mammograms and their cor- 

esponding Prior views from the first exams (i.e. t = 0), and another 

cenario for only correct prediction on Prior mammograms even 

hough their corresponding Current views were not correctly pre- 

icted. 

It is observed that the highest results were reported by the 

OLO-based model that was inferred on synthetic Prior mammo- 

rams by Pix2Pix technique, where a total number of 52 mammo- 

rams (36% ± 0.01) were accurately anticipated. We also noticed a 

igh percentage of 36% ± 0.01 was shown for Mass lesions, 14% ±
.01 for Calcification lesions, and 50% ± 0.02 for Architectural Dis- 

ortion lesions. In addition, 90% ± 0.06 of Normal mammograms 

ere accordingly classified on Prior exam screenings. The inference 

ime per each configuration was reported with a maximum value 

f 0.63 seconds per image. 

Consequently, the Pix2Pix model indicates the most effective 

echnique for image-to-image translating mammograms from Prior 

o Current appearance in order to help increase the number of 

orrect detection and categorization of breast lesions at t = 0. An 

verall true prediction rate of 37% was reported using the pro- 

osed methodology that reveals the success of our suggested 

ramework to help an early diagnosis without the urgent need 

f a follow-up screening that might occur a late stage for breast 

ancer. 

We also reported the false prediction rate that counted the 

issed cases on Prior views by the inference model. The reported 

umbers could be explained by the fact that we did not train the 

odel on Prior views as they were annotated by experts as being 

ormal at t = 0. 

Although the gold standard of the retrospective comparison we 

resented is 0 predictions at t = 0, we also noticed a drop of 9%

n the false prediction using the synthetic Prior images that were 
N

11 
enerated by Pix2Pix model for image-to-image translation with an 

verall value of 62%. 

Additionally, Fig. 11 illustrates the confusion matrix for the clas- 

ification of the true detected bounding boxes on the Prior mam- 

ograms, where three types of lesions are presented with the Nor- 

al cases (i.e. correct prediction without detected lesions). It is 

lear that prediction error for different classes is low with a maxi- 

um rate of 3.5%. 

.6. Retrospective analysis for the early detection and classification 

In this part, we investigate the follow-up exam time (i.e. origi- 

ally between 1 to 6 years) of the true early prediction results for 

ach class label at Section 4.5 . Fig. 12 illustrate retrospectively that 

ur suggested methodology is capable to anticipate the presence 

f breast lesions that were originally diagnosed at a later exam 

i.e. t > 0). In particular, Mass lesions were predicted beforehand but 

ater detected by experts and radiologists within 2 to 3.5 years. The 

omparative figure also represents the latest follow-up exam time 

f results from using the image-to-image translation techniques 

ersus the original mammograms. 

Moreover, Fig. 13 illustrates a comparison of inference results 

f the YOLO-based model with and without image-to-image trans- 

ation across the different classes and overall. We can visually 

onclude that the Pix2Pix translation method had the best per- 

ormance overall, which could also be explained by the fact the 

ix2Pix model was trained between paired images, compared to 

he CycleGAN model that used unpaired images. Hence, the Pix2Pix 

odel is more efficient than the CycleGAN for the particular task 

f image-to-image translation considering the advantage of image 

lignment it presents between the paired datasets. 

It is also to notice that the two image-to-image translation 

ethods yielded to better results than using original images (i.e. 

o translation) for all different lesions except for the Calcifications. 
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Fig. 11. Confusion matrix of prediction results for Prior Mammograms. 

Fig. 12. Comparison of Mean follow-up exam time for prediction results across classes with and without image-to-image translation Pix2pix and CycleGAN on Prior mam- 

mograms. 
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his particularly can be explained with the difference between the 

ypes of breast lesions in terms of shape, size and texture. It is 

ommonly known that calcifications do not appear in standard 

hape and location and they can be bilateral, thick learn, clustered, 

leomorphic and vascular, etc. [ 31 , 50 ]. Due to their irregular size

nd position, replicating such of abnormities using image-to-image 

ynthesis did not help the detection and identification of calcifica- 

ions lesions in prior views. The calcifications are often small and 

lustered and they require a smooth pixel distribution, however 

he x-rays images could be degraded and the breast calcifications 

ould be hard to be identified at early state [51] . 

Furthermore, we compared results of the early detection and 

lassification across the Prior exam’s time that varied between 1 to 

 years. Fig. 14 provides a visual observation of the percentage of 

orrectly predicted Prior mammograms for each class label using 

he best-reported experiment (i.e. using the Pix2Pix translation). 
12 
t is clear that the follow-up exam time of 1 year had the high- 

st rate of predicted images. This emphasizes the success of our 

ethodology to early localizing and identifying lesions that are of- 

en considered the hardest to diagnose. Another observation is that 

ur methodology captured the Mass lesions that had follow-up re- 

uests of later than 3 years, which might be too late to diagnose 

atients with Mass breast lesion. 

Finally, two samples of mammograms that were taken from dif- 

erent patients, including Prior exam views and their correspond- 

ng Current exam views are shown below in Fig. 15 . Two cases of 

esults are demonstrated: 1) When both Current and Prior mam- 

ograms were correctly predicted, and 2) When only the Prior 

ammograms were correctly predicted. It seems that when the 

odel failed to predict lesions in some Current mammograms, 

heir corresponding Prior mammograms were successfully pre- 

icted using the inference model. Predicted bounding boxes were 
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Fig. 13. Comparison performance of YOLO Fusion model across classes with and without image-to-image translation. 

Fig. 14. Comparison performance of YOLO Fusion model and Pix2Pix for image-to-image translation for different classes across follow-up exam time (years). 
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lightly different between views but they exceeded the threshold 

core, and this could be explained with the different quality of the 

cquired images and the type of the detected lesions. 

Moreover, Normal mammograms were shown in the last row 

ccordingly where correct predictions were demonstrated for both 

creening and for only Predicted mammograms. 
13
Finally, a comparison of latest studies and similar methods were 

eported against our proposed methodology. For a complete and 

air comparison, only works that were applied for Mass lesions de- 

ection were reported and compared in Table 6 . Comparing both 

etection accuracy rate and inference time with the other works 

hat were evaluated on the public datasets CBIS-DDSM, INbreast, 
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Fig. 15. Example results on Prior mammograms vs Current mammograms using the YOLO-based Fusion model that was inferred on the translated Prior images from Pix2Pix 

method across classes: Mass (red bounding boxes, first row), Calcification (green bounding boxes, second row), and Architectural Distortion (yellow bounding boxes, third 

row). Red arrows point to the ground truth location. Last row belongs to the Normal class. 
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nd MIAS, our YOLO-based fusion models achieved overall bet- 

er than previous works. Our recent work was considered having 

he best trade-off between the detection accuracy and testing time 

omparing to the work by Peng et al. [24] that had a better in-

erence time of 0.134 second per image but it only had a detection 

ccuracy rate of 93.45% on the CBIS-DDSM dataset. Accordingly, the 

ork by Al-Antari et al. [18] had faster inference time of 0.025 sec- 

nds per image on Mass detection for the INbreast dataset, but our 
14 
esults exceeded their detection accuracy rate of only 97.27% where 

e reported a detection accuracy rate of 98.1% on the CBIS-DDSM 

ataset [31] . Additionally, it is fair to mention that all experiments 

n the related works were conducted using different configurations 

nd preprocessing techniques, which may show different perfor- 

ance on public datasets. We also compared the work of Zheng 

t al. [38] that similarly conducted the detection and classifica- 

ion tasks on the UCHCDM dataset. Although the surveyed work 
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Table 6 

Comparison of Mass detection with other works. 

Reference Year Method Dataset Detection accuracy 

rate (%) 

Inference time per 

image (sec) 

Al-masni et al. [28] 2017 YOLO DDSM 85.25 NA 

Dhungel et al. [22] 2017 Cascade Deep Learning and Random Forest INbreast 96 39 

Al-masni et al. [30] 2018 YOLO DDSM 99.7 NA 

Zheng et al. [38] 2018 Detection: 3 cascading detectors (Haar, LBP, and HOG) UCHCDM 92.8 0.62 

Classification: VGG-19 0.88 

Agarwal et al. [13] 2019 CNN patch classifier and mass probability map (MPM) CBIS-DDSM 82 NA 

INbreast 98 

Peng et al. [24] 2020 Faster R-CNN CBIS-DDSM 93.45 0.134 

INbreast 95.54 

Al-Antari et al. [18] 2020 YOLO INbreast 97.27 0.025 

Singh et al. [27] 2020 Single Shot Detector (SSD) INbreast 97 NA 

Aly, G. et al. [17] 2021 YOLO INbreast 89.5 0.009 

Lbachir et al. [52] 2021 Mean-shift, standard deviation filter and fast scanning algorithm MIAS 96.53 NA 

CBIS-DDSM 92 

Isfahani et al. [53] 2021 Growth regional method MIAS 92 NA 

Silalahi et al. [54] 2021 CNN (VGG + ResNet) INbreast 90 NA 

Baccouche et al. [31] 2021 YOLO-based Fusion Models CBIS-DDSM 95.7 0.55 

INbreast 98.1 0.58 

Private 98 0.52 

Proposed Methodology 2022 YOLO-based Fusion Models (Current mammograms) UCHCDM 92.09 0.62 

Table 7 

Comparison of Early detection with other works. 

Reference Year Method Dataset Class Label Early Detection 

accuracy rate (%) 

Inference time per 

image (sec) 

Watanabe et al. 

[33] 

2019 cmAssist – Custom deep 

learning networks 

Private Mass 27 NA 

Loizidou et al. [36] 2019 Temporal subtraction Custom Calcification 20 NA 

Proposed 

Methodology 

2022 YOLO-based Fusion 

Models + Pix2Pix translation 

(Prior mammograms) 

UCHCDM + 

Synthetic dataset 

Mass 36 ± 0.01 0.63 

Calcification 14 ± 0.01 

Architectural 

Distortion 

50 ± 0.02 

Normal 90 ± 0.06 

Overall 37 ± 0.10 

a

r

f

a

d

d

m

3

e  

w

f

a

o

e

d

c

e

t

s

r

a

l

t

t

w

b

w

a

5

m

F

u

t

t

o

s

t

p

d

a

o

m

t

S

p

v

h

b

e

e

o

d

n

a

t

chieved a better overall performance of 92.8% than our reported 

esults, the tasks were not simultaneous and required separate in- 

erence time of 0.62 seconds per image for the detection method 

nd 0.88 seconds per image on the classification. 

Summing up, the comparative works in Table 6 have been con- 

ucted to either extract the location of breast mass lesions or to 

etect and then classify the abnormality of the breast lesion. We 

ainly compared works that were based on the YOLO model [ 28 , 

0 , 18 , 17 ], however we analyzed other similar deep learning mod- 

ls such as CNN [ 13 , 54 ], Faster R-CNN [24] , and SSD [27] . Besides,

e included latest machine learning related works such as random 

orest [22] , feature extraction [38] , fast scanning algorithm [52] , 

nd growth regional method [53] . Our work was previously applied 

n two public datasets and it has currently demonstrated the same 

fficiency on the Current views of the private dataset UCHCDM. 

Furthermore, we compared the effort of similar works on con- 

ucting an early detection of breast lesions against our paper’s 

ontribution. Table 7 shows two recent works that had the clos- 

st similarity on integrating Prior mammograms views to predict 

he location and type of abnormal lesions. It is clear that our work 

urpassed the work of Watanabe et al. [33] that was able to accu- 

ately detect and distinguish Mass lesions with an early detection 

ccuracy rate of 27%. However, our proposed methodology had a 

ower early detection accuracy rate on Calcification lesions where 

hey had 20% on a custom dataset that was generated using the 

emporal subtraction technique. Genuinely, all the reviewed works 

ere assessed on private datasets and the reported results could 

e distinctive compared to our study’s outcome. All comparable 

orks did not measure the testing time but our proposed method 

chieved an inference time of only 0.63 seconds per image. 
15 
. Discussion and conclusion 

In this study, we have proposed using the YOLO architecture 

odel to detect and classify suspicious lesions in mammograms. 

ollowing our recent work [31] , we have shown the advantage of 

sing a YOLO-based fusion model to correctly localize and identify 

hree different types of lesions: Mass, Calcification, and Architec- 

ural Distortion. The proposed framework was furthermore devel- 

ped to integrate the Prior mammograms from all used follow-up 

creenings and provide an early detection and classification on ini- 

ial screened mammograms. The work emphasized the ability of a 

ossible retrospective prediction on Prior mammograms that were 

iagnosed as Normal but at a later stage, they were reported with 

 clear presence and progress of abnormal findings. 

Similar methodologies addressed the problem and used pairs 

f mammograms to enhance the CAD systems’ results on Current 

ammograms by including temporal features for a regional regis- 

ration [35] , or adding temporal subtraction between pairs to an 

VM classifier [36] or a CNN model [37] . However, our study em- 

loyed one single model that was trained and tested on Current 

iews, and next inferred on their corresponding Prior views. We 

ave emphasized the performance of our proposed methodology 

y directly applying the saved YOLO-based fusion model differ- 

ntly on original and synthetic Prior mammograms that were gen- 

rated using the image-to-image translation techniques. Two state- 

f-the-art models, CycleGAN and Pix2Pix, were trained and vali- 

ated between the pairs of mammograms (Prior, Current) to create 

ew translated Prior mammograms that can overcome the mis- 

lignment between the two screenings due to temporal and tex- 

ure changes. 
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[

Performance results showed a high early detection accuracy 

ate of 36% ± 0.01 for Mass lesions, 14% ± 0.01 for Calcification 

esions, and 50% ± 0.02 for Architectural Distortion lesions. In ad- 

ition, 90% ± 0.06 of Normal mammograms were accordingly clas- 

ified based on Prior exam screenings. Quantitative results were 

eported on two scenarios: both Current and Prior mammograms 

ere correctly predicted, and only Prior mammograms were cor- 

ectly predicted when their corresponding Current views were 

ispredicted. 

The reported outcome forms a promising performance of the 

OLO architecture model to capture missed lesions in former 

creening views that were clearly present in their latest screen- 

ng views. Although the early detection and classification results 

or abnormal lesions were not significantly high (i.e. true predic- 

ion rate less than 60%), the percentage of the correctly predicted 

rior mammograms is high enough to make a clinical impact for 

reast cancer. 

Fig. 14 demonstrated that in particular our methodology could 

arly detect locations of Mass lesions much earlier than the expert 

iagnoses using follow-up screenings within 3 to 6 years, which is 

elatively late for breast cancer diagnosis. 

Limitations of this work may occur in preparing the right for- 

at of the training configuration for the YOLO-based model. An- 

ther challenge presented by a long training of image-to-image 

echniques due to the high number of hyperparameters. CycleGAN 

nd Pix2Pix models were separately trained and evaluated aside to 

enerate synthetic data and the training took on average 3 hours. 

This paper provided an assessment of the YOLO-based fusion 

odel for breast lesion detection and classification on mammog- 

aphy with a low error rate. Moreover, a new framework was pre- 

ented for a retrospective early detection and classification of ab- 

ormality in mammograms and assist radiologists with assured di- 

gnoses for each type of lesions. 

As screening mammography has been considered an essential 

ool for breast cancer that has been acknowledged to lead to a sig- 

ificant reduction of mortality rate, CAD systems have tried to re- 

ress its outcome and lower the number of missed detection on 

creening. Therefore, the contribution of this paper could be uti- 

ized to screen Prior mammograms and detect those with the high- 

st abnormal risk of breast cancer. Consequently, it will provide a 

arning signal for radiologists to forecast and anticipate the cancer 

rogress. 

Further investigation might be required to assess the future 

isk’s region and analyze the signal’s texture and surrounding con- 

ours, which facilitate understanding of the abnormality in order 

o develop a cost-effective clinical application. 
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