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Background and Objective: Computer-aided-detection (CAD) systems have been developed to assist radi-
ologists on finding suspicious lesions in mammogram. Deep Learning technology have recently succeeded
to increase the chance of recognizing abnormality at an early stage in order to avoid unnecessary biopsies
and decrease the mortality rate. In this study, we investigated the effectiveness of an end-to-end fusion
model based on You-Only-Look-Once (YOLO) architecture, to simultaneously detect and classify suspi-

Keywords: cious breast lesions on digital mammograms. Four categories of cases were included: Mass, Calcification,
Breast cancer Architectural Distortions, and Normal from a private digital mammographic database including 413 cases.
Detecﬁio“‘ For all cases, Prior mammograms (typically scanned 1 year before) were all reported as Normal, while
ggfgﬁcatlon Current mammograms were diagnosed as cancerous (confirmed by biopsies) or healthy.

Methods: We propose to apply the YOLO-based fusion model to the Current mammograms for breast le-
sions detection and classification. Then apply the same model retrospectively to synthetic mammograms
for an early cancer prediction, where the synthetic mammograms were generated from the Prior mam-
mograms by using the image-to-image translation models, CycleGAN and Pix2Pix.

Results: Evaluation results showed that our methodology could significantly detect and classify breast
lesions on Current mammograms with a highest rate of 93% + 0.118 for Mass lesions, 88% + 0.09 for
Calcification lesions, and 95% =+ 0.06 for Architectural Distortion lesions. In addition, we reported eval-
uation results on Prior mammograms with a highest rate of 36% + 0.01 for Mass lesions, 14% + 0.01
for Calcification lesions, and 50% =+ 0.02 for Architectural Distortion lesions. Normal mammograms were
accordingly classified with an accuracy rate of 92% + 0.09 and 90% + 0.06 respectively on Current and
Prior exams.

Conclusions: Our proposed framework was first developed to help detecting and identifying suspicious
breast lesions in X-ray mammograms on their Current screening. The work was also suggested to re-
duce the temporal changes between pairs of Prior and follow-up screenings for early predicting the lo-
cation and type of abnormalities in Prior mammogram screening. The paper presented a CAD method
to assist doctors and experts to identify the risk of breast cancer presence. Overall, the proposed CAD
method incorporates the advances of image processing, deep learning and image-to-image translation for
a biomedical application.

Prior mammogram
Early diagnosis
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1. Introduction

Breast cancer is a malignant tumor that arises from the ab-
normal breast cells and it is one of the dangerous diseases that
threaten women worldwide [1]. According to the American Cancer
Society, over 279,000 cases were reported in the United States in
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2020 and it is estimated that 43,600 women will die from breast
cancer in 2021 [2]. The most common symptom for breast can-
cer is severe change in the breast structure and in the tissue ap-
pearance, which have been also noticed with a rapid formation of
breast tumors and cell clusters [3].

Mammography screening is one of the effective medical imag-
ing tools for early breast cancer detection and diagnosis, and it can
lower rates of advanced and fatal breast cancer in its early stages
[4]. To inspect for potential lesions, i.e. Mass, Calcification, Archi-
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tectural distortion, radiologists rely on human visual understand-
ing to detect and extract all diagnostic information from mammo-
grams [5]. However, it has been proved that about 10% to 30% of
cancer cases are missed on screening mammography, which gen-
erates a false negative rate up to 50% depending on the type of
lesions and the breast density [6]. With the increase of subsequent
follow-ups and screenings during the diagnosis period, it has been
demonstrated that about 50% of Prior mammograms have lesions
visible in retrospect [7]. Consequently, it made radiologists won-
der whether normal Prior mammograms without clear signs of any
type of lesions could actually contain hidden information indicat-
ing a future risk of tumor appearance [38].

For these reasons, computer-aided detection (CAD) technology
has been introduced over the past 30 years to improve the preci-
sion of mammography interpretation [9]. Typically, CADs are de-
veloped to localize suspicious regions of lesions that exist in the
screened mammograms. The CAD approach is usually based on
extracting image characteristics such as, gray levels, texture, and
shape to identify regions of interest (ROI) via simple machine
learning techniques [10]. So far, these techniques have not lowered
the high false positive rate, nor overcome the high variation of tu-
mors shape, size and texture.

In recent studies, deep learning has shown interest in adopt-
ing advanced models that could extract sophisticated features to
localize and identify breast tumors with an equal or higher per-
formance of human interpretation [11, 12]. With the continuous
increase of mammography data availability and the existing large
computational computers, deep learning algorithms have been im-
plemented to alleviate the radiologists’ effort in reading and as-
sessing mammography images [13]. Deep learning models have
shown the ability to extract deep and high-level features from raw
images without knowledge assistance, and they demonstrated re-
markable success for objects detection and classification in mam-
mography [14, 15]. Such models that were widely used in the lit-
erature are considered variation of the Convolutional Neural Net-
works (CNNs) model, i.e. R-CNNs, Fast CNNs and Faster R-CNNs
models [16]. However, one single model called You-Only-Look-
Once (YOLO) was suggested to conduct the detection and classi-
fication tasks simultaneously with low memory dependence and
fast results, which made it convenient for CAD application [17, 18].

Although many developments have been carried out to improve
the detection accuracy of breast lesions using the deep learning
techniques, there are few efforts addressed to use Prior and follow-
up mammograms to simulate the disease progression and avoid
unnecessary screening or overdiagnosis that cost billions of dollars
annually in healthcare spending [19].

In this study, we first propose using the YOLO-based model to
simultaneously detect abnormal lesions on Current mammograms
and classify them into Mass, Calcification, or Architectural Distor-
tion. Second, we investigate potential performance of the trained
model to localize and label abnormal regions in Prior mammo-
grams that were reported as normal, but later diagnosed with ab-
normal findings at follow-up screening. To do that, our methodol-
ogy uses image-to-image translation techniques to learn at a first
stage an image mapping between pairs of mammograms that gen-
erates translated Prior mammograms to overcome misalignment
between screenings, and at a second stage, it predicts location and
nature of future lesions’ appearance at early screening.

2. Background

Since its discovery in 1913, mammography has been consid-
ered an essential key for early detection and diagnosis of specious
lesions. Mammography screening has helped radiologists identify
breast cancer and several studies showed its impact for a signif-
icant reduction in mortality rate [20]. With the remarkable ad-
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vances in computer vision and artificial intelligence to assist doc-
tors for medical imaging analysis, many studies showed the effec-
tiveness of CAD systems to automatically detect suspicious lesions
from raw screened mammograms [21]. The introduction of neural
network models changed the CAD’s approach and substituted the
use of hand-crafted features extraction with deep learning archi-
tectures that are capable of learning complex features at different
scales [22].

Recent studies have attempted to develop CAD models to local-
ize the existing lesions in a fast and precise way using the differ-
ent neural networks. Ribli et al. [23] developed a CAD system using
the Faster R-CNN model to detect and classify breast lesions of IN-
breast dataset into malignant or benign and obtained an AUC score
of 0.95. Similarly, Peng et al. [24] suggested an automated mass
detection approach that combined Faster R-CNN architecture and
a multiscale-feature pyramid network. The work achieved a true
positive rate of 0.93 and 0.95 respectively on CBIS-DDSM and IN-
breast datasets. The study yielded a detection accuracy of up to
90% and a classification accuracy of 93.5% on the DDSM dataset. In
another work by Li et al. [25], a bilateral mass detection method
was introduced using two networks: a registration network be-
tween left and right breasts and a Siamese-Faster-RCNN network
to detect masses from pairs of registered mammograms. They re-
ported results of a true positive rate of 0.88 on the INbreast dataset
and 0.85 on a private dataset. Another attempt by Vivek et al.
[26] used a Single Shot Detector (SSD) model presented in [27] to
localize breast tumors in a first step and then segment and classify
regions of interest. The work achieved a true positive rate of 0.97
on the INbreast dataset.

With the progress of deep learning architectures for object de-
tection in mammography, the You-Only-Look-Once (YOLO) model
has been introduced and shown success in achieving a fast and
accurate detection and classification compared to state-of-the-art
methods. This was manifested by Al-masni et al. [28] who devel-
oped a CAD system using the YOLO-based model and achieved a
detection accuracy of 85.52% on the DDSM dataset. In addition,
Hamed et al. [29] presented a YOLOV4-based CAD system with 2-
path detection of masses in full and cropped mammograms and
then classified them into benign and malignant. The system suc-
ceeded with an overall detection rate of 98% and classification ac-
curacy of 95%. In the same context, Al-masni et al. [30] proposed a
CAD system framework that detected breast masses in full images
using the YOLO-based model with an overall accuracy of 99.7%. Ac-
cordingly, Baccouche et al. [31] recently proposed a YOLO-based fu-
sion model to detect breast lesions and classify them into mass or
calcification. The work achieved a detection accuracy rate of 98.1%
on the INbreast dataset and 95.7% on the CBIS-DDSM dataset.

Early detection and diagnosis of breast cancer in mammography
using the deep learning-based CAD systems can help prevent de-
velopment of tumors by marking lesions, and thus it can effectively
decrease death rate [32]. A retrospective study by Watanabe et al.
[33] showed a potential area of improvement for radiologists’ inter-
pretation of screening mammograms for early detection using Ar-
tificial Intelligence. The studied CAD system succeeded to mark 30
(86%) of 35 missed micro-calcifications and 58 (73%) of 80 missed
masses. In addition, missed malignant lesions were flagged as early
as 70 months Prior to recall or diagnostic follow-up. In conse-
quence, CAD systems could benefit from the change that occurred
between Prior and Current mammographic exams. A recent work
by Timp et al. [34] tried to improve the characterization of mass
lesions by adding information about the tumor behavior over time.
The authors presented a CAD program to detect temporal changes
between two consecutive screening images using a regional reg-
istration method in order to localize lesions detected on the cur-
rent views and their corresponding on the Prior views. After that, a
Support Vector Machines (SVM) classifier was applied to show the
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effectiveness of temporal features. In a different study, Timp et al.
[35] attempted to improve detection methods by including tem-
poral information in the CAD system. A regional registration tech-
nique along feature space was used to map suspicious locations
on the Current mammograms with a corresponding location on
the Prior mammograms with 72% accuracy. Accordingly, Loizidou
et al. [36] tried to increase the micro-calcification detection accu-
racy to 99.2% by adding temporal subtraction between mammo-
gram pairs before applying SVMs classifier. In the same context, a
recent study by Loizidou et al. [37] extended their previous work
of breast micro-classification detection and classification by adding
an image registration step of Prior mammograms before applying
temporal subtraction of pairs. In a different work by Zheng et al.
[38], follow-up digital mammography images were integrated to-
gether to develop a CAD method for breast cancer detection. All
regional images were detected using the Haar features, local bi-
nary pattern and histogram of oriented gradient via the AdaBoost
approach and then fed into a CNN to filter out the false positives
cases.

With the advent of deep convolutional neural networks, image-
to-image translation has been employed to solve many computer
vision applications in medical imaging. Most of the recent appli-
cations, such as image synthesis and reconstruction, which build
on image-to-image translation, are based on two fundamental ar-
chitectures, called Pix2Pix and CycleGAN, depending on the im-
age’s data fashion, paired or unpaired datasets [39]. A recent ap-
plication by Shen et al. [40] employed the Pix2Pix network for
image-to-mask segmentation in mammography. Pix2pix was also
employed by Liao et al. [41] to artificially remove artifacts in CT
scans and the method showed improvement for clinical image re-
construction. Moreover, a CycleGAN was successfully employed by
Modanwal et al. [42] to reconstruct and harmonize MRI images for
breast cancer without requiring pairs of aligned images. The effec-
tiveness of CycleGAN was adopted in a recent work by Baccouche
et al. [43] that attempted to augment the mammography data by
generating synthetic images between two unpaired mammography
datasets using the CycleGAN model. A recent work by Hammami
et al. [44] also enhanced the multi-organ detection performance
by combining CycleGAN and YOLO.

Inspired by the reviewed works and their diagnosis results,
we first attempt solving the task of detection and classification
of three types of breast lesions (i.e., Mass, Calcification, Archi-
tectural distortion) on most recent screening mammograms us-
ing the YOLO-based fusion models. Second, we suggest replicating
early-screened mammograms with healthy diagnosis and main-
taining Prior shape and appearance while predicting suspicious
findings that resemble the Current mammograms. We evaluated
two state-of-the-art techniques for image-to-image translation, Cy-
cleGAN and Pix2Pix and compared their performance on predicting
location and type of lesions on Prior mammograms at early screen-
ing.

3. Methods and materials
3.1. YOLO-based fusion model: overview

The main method is based on our recent work [31], where the
YOLO architecture model for simultaneous detection and classifi-
cation of breast lesions was proposed. We upgrade the work to
evaluate the capability of our previous methodology on localizing
suspicious regions from the entire breast mammograms and clas-
sifying the type of lesions into Mass, Calcification, or Architectural
distortion.

YOLO is a deep learning network that where a single Convolu-
tional Neural Networks (CNNs) architecture model simultaneously
localizes the bounding boxes of objects and classifies their class la-
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bels from the entire images. The YOLO-based model has had four
versions, but at the time our recent work was published, the latest
version was YOLO-V3, which was adopted to detect different scaled
objects using the DarkNet backbone framework.

As the previous work detailed, we employed a YOLO-based
model in a different evaluation fashion. The basic model was ini-
tially trained using different configurations (i.e. target class labels).
Then, each experiment was evaluated by selecting the best pre-
dicted bounding boxes within all augmented images (i.e. original
and rotated images) having the highest confidence score. The tech-
nique was proved an effective way to determine the best repre-
sentative images to precisely detect and classify breast lesions in
each mammogram. After that, as shown in Fig. 1, the idea of YOLO-
based fusion models was implemented in order to improve the fi-
nal prediction results. Different predictions were joined to lower
the final error rate and to combine models that were differently
configured. In this work, we used the same notation by referring
Modell to the YOLO-based model that was trained and config-
ured for one class either Mass, Calcification, or Architectural Dis-
tortion. Therefore, Model2 refers to the YOLO-based model that
was configured for multiple classes training (i.e. all three classes
together). Finally, the Fusion Model refers to the combined evalu-
ation of Model1l and Model2 that was used to improve the overall
detection performance. The final model should select predictions
that were not within the single class predictions according to a
threshold of 0.5, which showed satisfying results.

All models were developed and tested on the Current mammo-
grams from the most recent screening, with either Mass, Calcifi-
cation or Architectural Distortion lesions. Different from our previ-
ous work, we added a class label, ‘Normal’ for the current mam-
mograms that were not diagnosed with abnormal findings during
the follow-up screening. Our trained YOLO-based model on abnor-
mal mammograms was applied on Normal mammograms to en-
sure that no bounding boxes were predicted, and consequently,
classify the mammograms as Normal.

3.2. Image-to-image translation technique

Deep convolutional networks have been enormously improved
to provide cutting-edge solutions to computer vision and they have
given the ability to manipulate images for complex image-related
tasks such as image synthesis, image reconstruction, image transla-
tion, etc. Recently, these tasks were significantly treated thanks to
the discovery of Generative Adversarial Networks (GANs). A stan-
dard GAN comprises two models, a generator and a discrimina-
tor. These models compete against each other to produce fake data
that is realistic enough to fool the discriminator. The architecture
has known success in medical imaging applications [45] and many
variants were introduced such as conditional GAN (cGAN), Wasser-
stein Generative Adversarial Network (WGAN), etc. Further work
extended the idea to create multiple GANs that can serve for syn-
thetic data augmentation, domain adaptation, and style transfer.
This allowed using a pair of generators to learn mappings of im-
ages and a pair of discriminators to learn two different types of
images. The idea emphasized the image-to-image translation that
leverages external labeled dataset to reconstruct effectively the
source domain images with additional characteristics of a target
domain such as pixels, color distribution, shape, and texture. In
this context, Pix2Pix and CycleGAN are two common models that
were developed to apply image-to-image translation techniques. As
shown in Fig. 2, similar to the standard GAN, the two models have
the target of translating images between two domains, however
the difference is that Pix2Pix model works with paired datasets
but only accepts one image from source domain (A) but it cor-
rects and updates the training using its corresponding image from
a target domain (B). Differently, CycleGAN model works with un-
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Fig. 2. Comparative scheme of standard GAN vs two variants for image-to-image translation: Pix2Pix and CycleGAN.

paired datasets, accepts two images, and performs a cyclic transla-
tion across domains to return new synthetic images.

In fact, Pix2Pix [46] is based on conditional GAN (cGAN) archi-
tecture to learn a mapping between images where the network
is composed from a generator G4 _, gand a discriminator D. The
generator has an encoder-decoder structure and it tries to transfer
special characteristics of an input image x? to get an output im-
age xg. The discriminator uses PatchGAN architecture and it com-
pares the input image to the generated image on one time and the
input image to the corresponding image from the external dataset
xB another time to update the generator learning.

Moreover, the Cycle Generative Adversarial Network, called Cy-
cleGAN [47], was designed to learn mapping between images with-
out the need to have correlations and one-to-one matches. The
idea was built on the top of Pix2Pix architecture but with the use
of two generators G4 _, g and Gg _, 4 for cycled images mapping
and two discriminators D, and Dg to distinguish between real and

synthetic images. Additionally, the CycleGAN technique employs a
cycle consistency for the generators to ensure a good reconstruc-
tion of the new image back to their original look. Consequently,
the technique helps to capture both domains’ features and style
without mismatch.

3.3. Early detection and classification framework

In this work, we first apply and evaluate the YOLO technique
on the Current mammograms to detect different breast lesions and
classify them into Mass, Calcification, or Architectural Distortion,
and the rest to Normal. Second, we consider two image-to-image
techniques, Pix2Pix and CycleGAN, to learn mapping between Cur-
rent mammograms and their corresponding Prior mammograms.
As shown in Fig. 3, new synthetic Prior mammograms are gener-
ated to overcome the misalignment between the screenings due to
temporal and texture changes. Next, the trained models on the first
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Fig. 3. Framework for early detection and classification on Prior mammograms - Example of Prior mammogram with normal diagnosis and Current mammogram with Mass

lesions (red bounding boxes).

step are used to predict the location and type of breast lesions on
the translated Prior mammograms. Predicting the bounding boxes
for suspicious lesions of “future cancers” in Prior mammograms is
challenging. Therefore, we integrate all diagnostic information into
one framework that explores possible evidence of invisible pat-
terns for indicating the risk of “future cancer”. Inference models
are directly applied on translated Prior mammograms and evalua-
tion was carried out using true bounding boxes’ positions and class
labels of their corresponding Current mammograms.

4. Results

All experiments using the proposed methods were conducted
on a PC with the following specifications: Intel(R) Core (TM) i7-
8700K processor with 32GB RAM, 3.70GHz frequency, and one
NVIDIA GeForce GTX 1090 Ti GPU. Python 3.6 was used for con-
ducting all experiments.

4.1. Dataset

In this study, we used a collection of private dataset from the
University of Connecticut Center (UCHC), named UCHC DigiMammo
(UCHCDM) database [48]. The dataset contains screening mammo-
grams of 230 patients, where each case had an initial screening,
called Prior exam, and a second follow-up screening between 1
to 6 years, called the Current exam, and a sample is displayed in
Fig. 4.

Each screening in the dataset acquires two different views, CC
and MLO. All images were saved with the Digital Imaging and
Communications in Medicine (DICOM) format, and were annotated
by expert radiologists in a description text file with correspond-
ing pathology of a mammographic finding (i.e. Mass, Calcifica-
tion, Architectural Distortion, Normal), as detailed in Table 1a and
Table 1b. Pixel-level ground-truth images were also provided sep-
arately where suspicious locations were circulated. A total of 413

Table 1a
Overall Data Distribution - Current and Prior Exams.

Total number of patients with pairs and pathology 230
Total number of Mammograms 833

Total number of Mammograms with pathology 826
Total number of Prior Mammograms (Normal) 413
Total number of Current Mammograms 413
Table 1b
Detailed Data Distribution - Current Exams.
Number of Current Mammograms with Mass Lesions 181
Number of Current Mammograms with Calcification Lesions 116
Number of Current Mammograms with Architectural Distortion Lesions 74
Number of Current Mammograms without Lesions (Normal) 42

mammograms are considered separately for Current and Prior ex-
ams, and they have an average size of 2950 x 3650 pixels.

4.2. Data preparation

All mammograms were collected using a digital X-ray mam-
mography tool that compressed and stored the images in DICOM
format. Therefore, we applied some preprocessing steps using the
denoising and the histogram equalization methods to all origi-
nal images to improve the quality prior to training process. Due
to large sizes of original DICOM images, all mammograms were
down-sampled using a bi-cubic interpolation over a 4 x 4 neigh-
borhood. In our experiments, we used image’ sizes of 448 x 448
pixels (i.e. divisible by 32 according to DarkNet backbone architec-
ture of YOLO-V3), which can fit in our GPU memory. Finally, all
training images were normalized to have the intensity values in
the range of [0, 1]. Samples of original and preprocessed images
are illustrated below in Fig. 5.
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(a)

(b)

Fig. 4. Sample of Prior and Current mammograms screenings (2.5 years) for Case# 31, Right CC View. (a) Prior exam with Normal mammogram (i.e. No diagnosis). (b)

Current exam with Mass present.

Deep learning models require a large number of data to en-
sure a fast learning convergence and generalized inference. How-
ever, medical datasets suffer from a shortage of annotated im-
ages because it is hard to collect and label medical images. To
solve this problem, data augmentation techniques were mainly
suggested to increase the dataset’s size by rotating or flipping in-
stances. In this paper, we rotated original images four times with
the angles A6 = {0°, 90°, 180°, 270°}. Consequently, a total num-
ber of 1,652 mammograms were generated for UCHCDM dataset
to train and test the model. Original samples from each class are
shown below in Fig. 6.

4.3. Evaluation metrics and experiments settings

In this study, we used object detection and classification met-
rics to measure the performance of YOLO-based models. To eval-
uate the detection of breast lesions’ location in the mammograms
and their type, we first measured the intersection over union (IoU)
score between each detected box and its corresponding ground-
truth (i.e. (x, y, h, w) coordinates and class label), and then we ver-
ified if it exceeded a confidence score threshold of 0.35. Eq. (1) de-
tails the IoU score formula.

Area of Intersection

IoU = -
oL score Area of Union

(1)

After that, we reported a final objective measure, called detec-
tion accuracy rate, which considered the predicted class probabil-
ity of true detected boxes. Inspired by the work of Samuelson et al.
[49] and recently adapted in the work [31], we computed the num-
ber of true detected images within lesions’ type (i.e. Mass, Calcifi-
cation, Architectural distortion) and Normal images over the total
number of mammograms used, as defined in Eq. (2).

True detected cases
Total number of cases

Detection accuracy =

(2)

Hence, the suggested measure allows removing all cases that
have a lower IoU score (i.e. low detection precision) before report-
ing the final detection accuracy rate. Therefore, the predicted boxes
that had confidence probability scores equal or greater than the
confidence score threshold were only considered. We measured
the detection accuracy rate overall and separately for each class
label to evaluate the performance of the YOLO-based model.

Additionally, we particularly reported the Current mammo-
grams prediction results using the area under curve (AUC) that re-
flects the performance of the model and the trade-off between the
true positive rate and false positive rate for each target class la-
bel. We used three additional metrics called precision, recall, and
sensitivity that are computed using the TP, FP, and FN that are de-
fined per predicted class to represent the number of true positive,
false positive, and false negative predictions, respectively as shown
in Eq. (3), Eq. (4), and Eq. (5).

.. TP
Precision = TP FP (3)
TP
Recall = TPEFN (4)
. FN
Sensitivity =1—-FNR=1 — FN TP (5)

Experiments for the image-to-image techniques that were con-
ducted using the CycleGAN and Pix2Pix models were trained ac-
cordingly on unpaired and paired datasets images. The Cycle-
GAN model was based on the available tutorial in Keras web-
page (https://keras.io/examples/generative/cyclegan). The architec-
ture model has two generators and two discriminators networks.
The generator network consists of two down-sampling blocks with
filter sizes [128, 256], nine residual blocks with filter size 256, and
two up-sampling blocks with filter sizes [128, 64]. The discrimi-
nator network is based on four down-sampling blocks with filter
sizes [64, 128, 256, 512]. For Pix2Pix model, we similarly used two
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(a) (b) (c)

Fig. 5. Samples from Current exams of original (upper row) and preprocessed mammograms (bottom row). (a) Case# 9: Left CC View. (b) Case# 14: Left CC View. (c) Case#
31: Right CC View.

(a) (b) ()

Fig. 6. Samples of original mammograms with red bounding boxes of ground-truth. (a) Case# 14: Current exam with Mass present, Left CC View. (b) Case# 220: Current
exam with Calcification present, Right CC View. (c) Case# 27: Current exam with Architectural Distortion present, Left CC View.
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Table 2
Cross Validation Folds: Data distribution across class labels.
Data Breast Lesions Normal Overall
Mass Calcification  Architectural Distortion
Training 578 373 243 130 1,324
Testing 144 92 60 32 328
Total 722 465 303 162 1,652
Model loss (5-folds Cross validation)
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Fig. 7. Learning curve plot between Training and Testing sets.

generators and two discriminators networks. The generator net-
work contains seven down-sampling and up-sampling blocks with
filter sizes [64, 128, 256, 512, 512, 512, 512]. We used the same dis-
criminator network from the CycleGAN architecture model. Hence,
the two models were trained and evaluated on 100 epochs and op-
timized using the Adam technique with learning rate of 0.0002 and
beta score of 0.5.

To ensure the model robustness, we performed a 5-fold cross
validation by training and testing the model using different test
sets of random mammograms. Consequently, the entire dataset
was randomly divided into equal 5 folds of 1,324 training images
(80%) and 328 testing images (20%) with respect to the imbalanced
classes as detailed in Table 2. Finally, we reported the average of
results over all the folds.

For all experiments using the YOLO-based model, we set the
learning rate to be 0.001, the batch size to be 8, and the num-
ber of epochs to be 100. The loss function combined the bounding
box regression loss, the class label loss, and the confidence loss.
All functions were based on cross-entropy and they were scaled to
handle the imbalance of class labels on each batch. In addition, the
early stopping method was used for the second half of iterations
to dynamically reduce the learning rate by 10% every 10 epochs
in case of constant loss function value. In order to prevent over-
fitting, all models were initialized by weights from a pre-trained
model on a large public dataset, Microsoft COCO. Then, the models
were re-trained and new layers were fine-tuned on our mammog-
raphy dataset. As a consequence, we only monitored the learning
curve with the loss function that was iteratively dropped and op-
timized during the epochs. As shown below in Fig. 7, there was no
overfitting observed during the learning.

4.4. Evaluation of YOLO-based model on current mammograms

First part of the study considered only Current mammograms
from the most recent screening exams. The YOLO-based models

were trained differently over the Current views of the UCHCDM
dataset. We varied the models according to the input dataset and
the target class. Hence, Modell was configured for single classes
and Model2 was configured for mixed classes. Finally, the Fusion
Model was designated to combine Modell and Model2 for each
target class according to the approach described in [31]. Table 3
shows quantitative comparison of the detection accuracy rate and
count that were reported using the 5-fold cross validation as pu +
o, where © and o refer to the mean and standard deviation, re-
spectively.

Results show the advantage of the adapted Fusion Model and
confirm its highest results overall and for each class label. Fusion
Model had the highest score of 95% for Architectural Distortion le-
sions and a score of 92% overall. Moreover, results in Table 3 show
the ability of YOLO architecture to detect and classify the breast
lesions with a maximum accuracy rate of 93% for mammograms
with Mass lesions, 88% for mammograms with Calcification lesions,
and 95% for mammograms with Architectural Distortion lesions.
Appropriately, Normal mammograms were also correctly classified
with a maximum accuracy score of 94% where no bounding boxes
were detected. All experiments had similar inference time with a
maximum value of 0.62 seconds per image.

Additionally, to get a better understanding of the models’ per-
formance, we generated the free-response receiver operating char-
acteristic (FROC) curves to illustrate the number of false positives
per image (FPI) for each target class label. Plots of the FROCs be-
tween Average sensitivity and the average number of false pos-
itives are shown in Fig. 8 that specifically compares between
Modell, Model2, and the Fusion Model.

By varying the threshold and the range of false positive be-
tween 0.05 and 0.20 overall, we could achieve an average sensitiv-
ity between 0.7 and 0.95 for all cases. Fig. 8 clearly shows that the
Fusion model had the highest performance compared to the other
evaluated models. It is observed that the proposed model could
obtain an average sensitivity of more than 0.90 with an average FPI
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Table 3
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Comparison performance for different models across labeled classes on Test sets.

Models Results  Breast Lesions Normal Overall Inference time per image (sec)
Mass Calcification  Architectural Distortion
Count 113 74 49 25 261
Model1 nxo 79% + 0.09 80% + 0.05 82% + 0.03 78% + 0.01 79% + 0.04 0.60
Count 110 79 51 28 268
Model2 n=to 76% + 0.03 86% + 0.04 85% + 0.02 87% + 0.05 82% + 0.03 0.62
Count 135 81 57 30 303
Fusion Model nto 93% + 0.118 88% + 0.09 95% + 0.06 94% + 0.11 92% + 0.09 0.62
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Fig. 8. FROC curve plots of the YOLO based proposed Detection and Classification models per class label on Test sets.

of 0.20 for Mass lesions, an average sensitivity of more than 0.85
with an average FPI of 0.12 for Calcification lesions, and an average
sensitivity of more than 0.90 with an average FPI of 0.175 for Ar-
chitectural Distortion lesions. Accordingly, Normal cases in Current
views were evaluated using the FROC analysis and a false positive
was considered when no detection should be occurred in a non-
cancerous case but it was missed by the model. It is to notice that
we could obtain an average sensitivity of around 0.95 with an av-
erage FPI of 0.20.

Finally, we analyzed the performance results with a particular
focus on the classification task that was conducted by the YOLO-
based Fusion model. Table 4 explores the calculated classification
metrics by each class label, where we achieved the highest sensi-
tivity of 94.11% on the cancer cases with Architectural Distortion
and a sensitivity of 92.09% on the non-cancerous cases.

Additionally, Fig. 9 illustrates a visual comparison of the trade-
off between the false positive rate (FPR) and the true positive rate

(TPR) according to the ROC curve plot between the different cases.
We observed a highest AUC score of 0.95 for the Mass and the
Architectural Distortion cases, and an AUC score of 0.96 for the
Normal cases. The low results for the Calcification lesions could
be explained with the fact that this type of breast lesions do not
have standard shape and location and they are often small and
randomly distributed which can limit the automatic detection [31].

Moreover, Fig. 10 illustrates the confusion matrix for the classi-
fication of the true detected bounding boxes applied on the Cur-
rent mammograms, where three types of lesions are presented
with the Normal cases (i.e. correct prediction without detected le-
sions). Clearly, the prediction error for different classes is low with
a high rate of 6.2% corresponding to the Normal class label and
7.6% corresponding to the Calcification cases. The distribution of
error within classes could be explained by the inability of YOLO-
based model to detect and distinguish some different types of le-
sions having similar shapes such as Calcification and Architectural
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Table 4
Performance results for Detection and Classification on Test sets.

Class Label Accuracy  Precision  Recall  Sensitivity = AUC

Mass 0.94 0.94 0.94 0.93 0.95

Calcification 0.93 0.88 0.88 0.88 0.94

Architectural Distortion  0.98 0.95 0.95 0.94 0.95

Normal 0.98 0.94 0.94 0.92 0.96
ROC curves - Fusion Model per class approach to look back at the Prior mammograms and try to ex-
104 . - - plore any patterns of breast lesions before waiting on a follow-up

= - screening.
,f’ Our methodology is based on joining the learned mapping
Z 081 e between the temporal views and a trained model on Current
=] ,z’ mammograms that were annotated by experts. First, the pairs of
z 06 ,/’ datasets were prepared using the same configuration, and two
= ’,’ image-to-image translation models were trained between the two
2 ‘_,’ datasets to determine the images mapping. Consequently, synthetic
é‘ 0.4 ’,’ mammograms from Prior screening exams were generated to re-
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- - = u. .
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0.0 . . . . used for inference on Prior mammograms. Experiments were eval-
0.0 0.2 0.4 0.6 0.8 10 uated using only the Fusion Model that showed the highest per-
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Fig. 9. ROC curve plots of the proposed YOLO-based Fusion Model per class label
on Test sets.

Distortion that often have irregular shape in challenging positions
within the breast.

4.5. Evaluation of YOLO-based model on prior mammograms

Second part of the study focused on using the pairs of mam-
mograms, including current views and their Prior screening exams
in order to provide an early detection and classification of lesions
on the Prior screening exams. All Prior mammograms were not
annotated with diagnosis and thus were considered Normal (i.e.
non-cancerous, corresponding to Os in “Experts prediction” row in
Tables 5a, 5b, and 5c¢). In this part, we introduce a retrospective

Mass - 0.93

Calcification

Architectural
Distortion

0.062

MNormal

Mass

Calcification

formance in Section 4.4. We first evaluated the performance us-
ing the original Prior mammograms without image-to-image trans-
lation and later compared to the Prior mammograms that were
translated using the CycleGAN and Pix2Pix techniques.

Table 5a, 5b and 5c¢ present results of early prediction on Prior
mammograms that are reported using the 5-fold cross validation
as u + o, where i and o refer to the mean and standard devia-
tion, respectively.

We considered a true prediction where the location and type of
breast lesions were correctly captured using the inference model,
retrospectively on non-cancerous screening views at t=0 years. The
inference evaluation was concluded using the ground-truth labels
of the Current views that were generated by experts later at t=[1,
6] years. Consequently, all predictions should be fairly compared to
0 predictions (i.e. all were missed) by experts at t=0.

Results in Table 5a, 5b and 5c show the count and percent-
age of mammograms for each class and overall, that were correctly

- 08
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Fig. 10. Confusion matrix of prediction results for Current Mammograms.
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Table 5a
Inference results of YOLO Fusion model on Test sets of original Prior Mammograms.
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Results for Prior Mammogram Prediction ~ Breast Lesions Normal Overall Inference time per image (sec)
Mass Calcification  Architectural Distortion
True prediction 33 16 19 26 94
nto 22% +0.09  17% + 0.07 31% + 0.06 81% + 0.02  28% +0.06 0.62
Experts prediction 0 0 0 0 0
False prediction 111 76 41 6 234
nto 77% + 0.08  82% + 0.16 68% + 0.03 18% + 0.17  71% + 0.03
Table 5b

Inference results of YOLO Fusion model on Test sets of Prior Mammograms using CycleGAN for image-to-image translation.

Results for Prior Mammogram Prediction Breast Lesions Normal Overall Inference time per image (sec)
Mass Calcification  Architectural Distortion
True prediction 32 10 22 26 91
w+o 22% 4+ 0.02  10% + 0.08 36% + 0.06 81% +£0.02 27% + 0.07 0.63
Experts prediction 0 0 0 0 0
False prediction 112 82 38 6 237
uw+to 77% £ 0.07  89% + 0.03 63% + 0.13 18% + 0.07  72% + 0.02
Table 5¢

Inference results of YOLO Fusion model on Test sets of Prior Mammograms using Pix2Pix for image-to-image translation.

Results for Prior Mammogram Prediction ~ Breast Lesions Normal Overall Inference time per image (sec)
Mass Calcification  Architectural Distortion

True prediction 52 13 30 29 124

nEo 36% + 0.01 14% + 0.01 50% + 0.02 90% + 0.06  37% + 0.1 0.63

Experts prediction 0 0 0 0 0

False prediction 92 79 30 3 204

nEo 63% + 0.08  85% =+ 0.08 50% + 0.01 9% + 0.03 62% + 0.12

predicted at Prior views and considered for an early detection and
classification. All true predictions presented two scenarios; one for
all correct prediction on both Current mammograms and their cor-
responding Prior views from the first exams (i.e. t=0), and another
scenario for only correct prediction on Prior mammograms even
though their corresponding Current views were not correctly pre-
dicted.

It is observed that the highest results were reported by the
YOLO-based model that was inferred on synthetic Prior mammo-
grams by Pix2Pix technique, where a total number of 52 mammo-
grams (36% + 0.01) were accurately anticipated. We also noticed a
high percentage of 36% + 0.01 was shown for Mass lesions, 14% =+
0.01 for Calcification lesions, and 50% + 0.02 for Architectural Dis-
tortion lesions. In addition, 90% + 0.06 of Normal mammograms
were accordingly classified on Prior exam screenings. The inference
time per each configuration was reported with a maximum value
of 0.63 seconds per image.

Consequently, the Pix2Pix model indicates the most effective
technique for image-to-image translating mammograms from Prior
to Current appearance in order to help increase the number of
correct detection and categorization of breast lesions at t=0. An
overall true prediction rate of 37% was reported using the pro-
posed methodology that reveals the success of our suggested
framework to help an early diagnosis without the urgent need
of a follow-up screening that might occur a late stage for breast
cancer.

We also reported the false prediction rate that counted the
missed cases on Prior views by the inference model. The reported
numbers could be explained by the fact that we did not train the
model on Prior views as they were annotated by experts as being
Normal at t=0.

Although the gold standard of the retrospective comparison we
presented is 0 predictions at t=0, we also noticed a drop of 9%
on the false prediction using the synthetic Prior images that were

1

generated by Pix2Pix model for image-to-image translation with an
overall value of 62%.

Additionally, Fig. 11 illustrates the confusion matrix for the clas-
sification of the true detected bounding boxes on the Prior mam-
mograms, where three types of lesions are presented with the Nor-
mal cases (i.e. correct prediction without detected lesions). It is
clear that prediction error for different classes is low with a maxi-
mum rate of 3.5%.

4.6. Retrospective analysis for the early detection and classification

In this part, we investigate the follow-up exam time (i.e. origi-
nally between 1 to 6 years) of the true early prediction results for
each class label at Section 4.5. Fig. 12 illustrate retrospectively that
our suggested methodology is capable to anticipate the presence
of breast lesions that were originally diagnosed at a later exam
(i.e. t>0). In particular, Mass lesions were predicted beforehand but
later detected by experts and radiologists within 2 to 3.5 years. The
comparative figure also represents the latest follow-up exam time
of results from using the image-to-image translation techniques
versus the original mammograms.

Moreover, Fig. 13 illustrates a comparison of inference results
of the YOLO-based model with and without image-to-image trans-
lation across the different classes and overall. We can visually
conclude that the Pix2Pix translation method had the best per-
formance overall, which could also be explained by the fact the
Pix2Pix model was trained between paired images, compared to
the CycleGAN model that used unpaired images. Hence, the Pix2Pix
model is more efficient than the CycleGAN for the particular task
of image-to-image translation considering the advantage of image
alignment it presents between the paired datasets.

It is also to notice that the two image-to-image translation
methods yielded to better results than using original images (i.e.
No translation) for all different lesions except for the Calcifications.
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Fig. 11. Confusion matrix of prediction results for Prior Mammograms.
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Fig. 12. Comparison of Mean follow-up exam time for prediction results across classes with and without image-to-image translation Pix2pix and CycleGAN on Prior mam-

mograms.

This particularly can be explained with the difference between the
types of breast lesions in terms of shape, size and texture. It is
commonly known that calcifications do not appear in standard
shape and location and they can be bilateral, thick learn, clustered,
pleomorphic and vascular, etc. [31, 50]. Due to their irregular size
and position, replicating such of abnormities using image-to-image
synthesis did not help the detection and identification of calcifica-
tions lesions in prior views. The calcifications are often small and
clustered and they require a smooth pixel distribution, however
the x-rays images could be degraded and the breast calcifications
could be hard to be identified at early state [51].

Furthermore, we compared results of the early detection and
classification across the Prior exam’s time that varied between 1 to
6 years. Fig. 14 provides a visual observation of the percentage of
correctly predicted Prior mammograms for each class label using
the best-reported experiment (i.e. using the Pix2Pix translation).

12

It is clear that the follow-up exam time of 1 year had the high-
est rate of predicted images. This emphasizes the success of our
methodology to early localizing and identifying lesions that are of-
ten considered the hardest to diagnose. Another observation is that
our methodology captured the Mass lesions that had follow-up re-
quests of later than 3 years, which might be too late to diagnose
patients with Mass breast lesion.

Finally, two samples of mammograms that were taken from dif-
ferent patients, including Prior exam views and their correspond-
ing Current exam views are shown below in Fig. 15. Two cases of
results are demonstrated: 1) When both Current and Prior mam-
mograms were correctly predicted, and 2) When only the Prior
mammograms were correctly predicted. It seems that when the
model failed to predict lesions in some Current mammograms,
their corresponding Prior mammograms were successfully pre-
dicted using the inference model. Predicted bounding boxes were
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Fig. 13. Comparison performance of YOLO Fusion model across classes with and without image-to-image translation.
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Fig. 14. Comparison performance of YOLO Fusion model and Pix2Pix for image-to-image translation for different classes across follow-up exam time (years).

slightly different between views but they exceeded the threshold Finally, a comparison of latest studies and similar methods were
score, and this could be explained with the different quality of the reported against our proposed methodology. For a complete and
acquired images and the type of the detected lesions. fair comparison, only works that were applied for Mass lesions de-

Moreover, Normal mammograms were shown in the last row tection were reported and compared in Table 6. Comparing both
accordingly where correct predictions were demonstrated for both detection accuracy rate and inference time with the other works

screening and for

only Predicted mammograms. that were evaluated on the public datasets CBIS-DDSM, INbreast,

13



A. Baccouche, B. Garcia-Zapirain, Y. Zheng et al.

Prior Mammogram
with correct Prediction

Current Mammogram
with correct Prediction
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Prior Mammogram
with correct Prediction

Current Mammogram
with incorrect Prediction

Fig. 15. Example results on Prior mammograms vs Current mammograms using the YOLO-based Fusion model that was inferred on the translated Prior images from Pix2Pix
method across classes: Mass (red bounding boxes, first row), Calcification (green bounding boxes, second row), and Architectural Distortion (yellow bounding boxes, third
row). Red arrows point to the ground truth location. Last row belongs to the Normal class.

and MIAS, our YOLO-based fusion models achieved overall bet-
ter than previous works. Our recent work was considered having
the best trade-off between the detection accuracy and testing time
comparing to the work by Peng et al. [24] that had a better in-
ference time of 0.134 second per image but it only had a detection
accuracy rate of 93.45% on the CBIS-DDSM dataset. Accordingly, the
work by Al-Antari et al. [18] had faster inference time of 0.025 sec-
onds per image on Mass detection for the INbreast dataset, but our

14

results exceeded their detection accuracy rate of only 97.27% where
we reported a detection accuracy rate of 98.1% on the CBIS-DDSM
dataset [31]. Additionally, it is fair to mention that all experiments
in the related works were conducted using different configurations
and preprocessing techniques, which may show different perfor-
mance on public datasets. We also compared the work of Zheng
et al. [38] that similarly conducted the detection and classifica-
tion tasks on the UCHCDM dataset. Although the surveyed work
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Table 6
Comparison of Mass detection with other works.
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Reference Year Method Dataset Detection accuracy Inference time per
rate (%) image (sec)
Al-masni et al. [28] 2017 YOLO DDSM 85.25 NA
Dhungel et al. [22] 2017 Cascade Deep Learning and Random Forest INbreast 96 39
Al-masni et al. [30] 2018 YOLO DDSM 99.7 NA
Zheng et al. [38] 2018 Detection: 3 cascading detectors (Haar, LBP, and HOG) UCHCDM 92.8 0.62
Classification: VGG-19 0.88
Agarwal et al. [13] 2019 CNN patch classifier and mass probability map (MPM) CBIS-DDSM 82 NA
INbreast 98
Peng et al. [24] 2020 Faster R-CNN CBIS-DDSM 93.45 0.134
INbreast 95.54
Al-Antari et al. [18] 2020 YOLO INbreast 97.27 0.025
Singh et al. [27] 2020 Single Shot Detector (SSD) INbreast 97 NA
Aly, G. et al. [17] 2021 YOLO INbreast 89.5 0.009
Lbachir et al. [52] 2021 Mean-shift, standard deviation filter and fast scanning algorithm MIAS 96.53 NA
CBIS-DDSM 92
Isfahani et al. [53] 2021 Growth regional method MIAS 92 NA
Silalahi et al. [54] 2021 CNN (VGG + ResNet) INbreast 90 NA
Baccouche et al. [31] 2021 YOLO-based Fusion Models CBIS-DDSM 95.7 0.55
INbreast 98.1 0.58
Private 98 0.52
Proposed Methodology 2022 YOLO-based Fusion Models (Current mammograms) UCHCDM 92.09 0.62
Table 7
Comparison of Early detection with other works.
Reference Year Method Dataset Class Label Early Detection Inference time per
accuracy rate (%) image (sec)
Watanabe et al. 2019 cmAssist - Custom deep Private Mass 27 NA
[33] learning networks
Loizidou et al. [36] 2019 Temporal subtraction Custom Calcification 20 NA
Proposed 2022 YOLO-based Fusion UCHCDM + Mass 36 + 0.01 0.63
Methodology Models + Pix2Pix translation Synthetic dataset Calcification 14 + 0.01
(Prior mammograms) Architectural 50 + 0.02
Distortion
Normal 90 + 0.06
Overall 37 £ 0.10

achieved a better overall performance of 92.8% than our reported
results, the tasks were not simultaneous and required separate in-
ference time of 0.62 seconds per image for the detection method
and 0.88 seconds per image on the classification.

Summing up, the comparative works in Table 6 have been con-
ducted to either extract the location of breast mass lesions or to
detect and then classify the abnormality of the breast lesion. We
mainly compared works that were based on the YOLO model [28,
30, 18, 17], however we analyzed other similar deep learning mod-
els such as CNN [13, 54], Faster R-CNN [24], and SSD [27]. Besides,
we included latest machine learning related works such as random
forest [22], feature extraction [38], fast scanning algorithm [52],
and growth regional method [53]. Our work was previously applied
on two public datasets and it has currently demonstrated the same
efficiency on the Current views of the private dataset UCHCDM.

Furthermore, we compared the effort of similar works on con-
ducting an early detection of breast lesions against our paper’s
contribution. Table 7 shows two recent works that had the clos-
est similarity on integrating Prior mammograms views to predict
the location and type of abnormal lesions. It is clear that our work
surpassed the work of Watanabe et al. [33] that was able to accu-
rately detect and distinguish Mass lesions with an early detection
accuracy rate of 27%. However, our proposed methodology had a
lower early detection accuracy rate on Calcification lesions where
they had 20% on a custom dataset that was generated using the
temporal subtraction technique. Genuinely, all the reviewed works
were assessed on private datasets and the reported results could
be distinctive compared to our study’s outcome. All comparable
works did not measure the testing time but our proposed method
achieved an inference time of only 0.63 seconds per image.
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5. Discussion and conclusion

In this study, we have proposed using the YOLO architecture
model to detect and classify suspicious lesions in mammograms.
Following our recent work [31], we have shown the advantage of
using a YOLO-based fusion model to correctly localize and identify
three different types of lesions: Mass, Calcification, and Architec-
tural Distortion. The proposed framework was furthermore devel-
oped to integrate the Prior mammograms from all used follow-up
screenings and provide an early detection and classification on ini-
tial screened mammograms. The work emphasized the ability of a
possible retrospective prediction on Prior mammograms that were
diagnosed as Normal but at a later stage, they were reported with
a clear presence and progress of abnormal findings.

Similar methodologies addressed the problem and used pairs
of mammograms to enhance the CAD systems’ results on Current
mammograms by including temporal features for a regional regis-
tration [35], or adding temporal subtraction between pairs to an
SVM classifier [36] or a CNN model [37]. However, our study em-
ployed one single model that was trained and tested on Current
views, and next inferred on their corresponding Prior views. We
have emphasized the performance of our proposed methodology
by directly applying the saved YOLO-based fusion model differ-
ently on original and synthetic Prior mammograms that were gen-
erated using the image-to-image translation techniques. Two state-
of-the-art models, CycleGAN and Pix2Pix, were trained and vali-
dated between the pairs of mammograms (Prior, Current) to create
new translated Prior mammograms that can overcome the mis-
alignment between the two screenings due to temporal and tex-
ture changes.
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Performance results showed a high early detection accuracy
rate of 36% + 0.01 for Mass lesions, 14% + 0.01 for Calcification
lesions, and 50% + 0.02 for Architectural Distortion lesions. In ad-
dition, 90% + 0.06 of Normal mammograms were accordingly clas-
sified based on Prior exam screenings. Quantitative results were
reported on two scenarios: both Current and Prior mammograms
were correctly predicted, and only Prior mammograms were cor-
rectly predicted when their corresponding Current views were
mispredicted.

The reported outcome forms a promising performance of the
YOLO architecture model to capture missed lesions in former
screening views that were clearly present in their latest screen-
ing views. Although the early detection and classification results
for abnormal lesions were not significantly high (i.e. true predic-
tion rate less than 60%), the percentage of the correctly predicted
Prior mammograms is high enough to make a clinical impact for
breast cancer.

Fig. 14 demonstrated that in particular our methodology could
early detect locations of Mass lesions much earlier than the expert
diagnoses using follow-up screenings within 3 to 6 years, which is
relatively late for breast cancer diagnosis.

Limitations of this work may occur in preparing the right for-
mat of the training configuration for the YOLO-based model. An-
other challenge presented by a long training of image-to-image
techniques due to the high number of hyperparameters. CycleGAN
and Pix2Pix models were separately trained and evaluated aside to
generate synthetic data and the training took on average 3 hours.

This paper provided an assessment of the YOLO-based fusion
model for breast lesion detection and classification on mammog-
raphy with a low error rate. Moreover, a new framework was pre-
sented for a retrospective early detection and classification of ab-
normality in mammograms and assist radiologists with assured di-
agnoses for each type of lesions.

As screening mammography has been considered an essential
tool for breast cancer that has been acknowledged to lead to a sig-
nificant reduction of mortality rate, CAD systems have tried to re-
dress its outcome and lower the number of missed detection on
screening. Therefore, the contribution of this paper could be uti-
lized to screen Prior mammograms and detect those with the high-
est abnormal risk of breast cancer. Consequently, it will provide a
warning signal for radiologists to forecast and anticipate the cancer
progress.

Further investigation might be required to assess the future
risk’s region and analyze the signal’s texture and surrounding con-
tours, which facilitate understanding of the abnormality in order
to develop a cost-effective clinical application.
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